37 research outputs found
Benign splenosis mimicking peritoneal seeding in a bladder cancer patient: a case report
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Genome-wide pleiotropy and shared biological pathways for resistance to bovine pathogens
<div><p>Host genetic architecture is a major factor in resistance to pathogens and parasites. The collection and analysis of sufficient data on both disease resistance and host genetics has, however, been a major obstacle to dissection the genetics of resistance to single or multiple pathogens. A severe challenge in the estimation of heritabilities and genetic correlations from pedigree-based studies has been the confounding effects of the common environment shared among relatives which are difficult to model in pedigree analyses, especially for health traits with low incidence rates. To circumvent this problem we used genome-wide single-nucleotide polymorphism data and implemented the Genomic-Restricted Maximum Likelihood (G-REML) method to estimate the heritabilities and genetic correlations for resistance to 23 different infectious pathogens in calves and cows in populations undergoing natural pathogen challenge. Furthermore, we conducted gene-based analysis and generalized gene-set analysis to understand the biological background of resistance to infectious diseases. The results showed relatively higher heritabilities of resistance in calves than in cows and significant pleiotropy (both positive and negative) among some calf and cow resistance traits. We also found significant pleiotropy between resistance and performance in both calves and cows. Finally, we confirmed the role of the B-lymphocyte pathway as one of the most important biological pathways associated with resistance to all pathogens. These results both illustrate the potential power of these approaches to illuminate the genetics of pathogen resistance in cattle and provide foundational information for future genomic selection aimed at improving the overall production fitness of cattle.</p></div
Catalytic mechanism of a retinoid isomerase essential for vertebrate vision
Visual function in vertebrates is dependent on the membrane-bound retinoid isomerase, RPE65, an essential component of the retinoid cycle pathway that regenerates 11-cis-retinal for rod and cone opsins. The mechanism by which RPE65 catalyzes stereoselective retinoid isomerization has remained elusive due to uncertainty about how retinoids bind to its active site. Here we present crystal structures of RPE65 in complex with retinoid-mimetic compounds, one of which is in clinical trials for treatment of age-related macular degeneration. The structures reveal the active site retinoid-binding cavity located near the membrane-interacting surface of the enzyme as well as an Fe-bound palmitate ligand positioned in an adjacent pocket. With the geometry of the RPE65-substrate complex clarified we delineate a mechanism of catalysis that reconciles the extensive biochemical and structural research on this enzyme. These data provide molecular foundations for understanding a key process in vision and pharmacological inhibition of RPE65 with small molecules
Prevalence of Autism Spectrum Disorders in Ecuador: A Pilot Study in Quito
This research presents the results of the first phase of the study on the prevalence of pupils with Autism Spectrum Disorder (ASD) in regular education in Quito, Ecuador. One-hundred-and-sixty-one regular schools in Quito were selected with a total of 51,453 pupils. Prevalence of ASD was assessed by an interview with the rector of the school or its delegate. Results show an extremely low prevalence of 0.11 % of pupils with any ASD diagnosis; another 0.21 % were suspected to have ASD, but were without a diagnosis. This low prevalence suggests that children and adolescents with ASD are not included in regular education in Quito. These results are discussed in the light of low diagnostic identification of ASD and low inclusion tolerance