80 research outputs found

    Generating Single Microwave Photons in a Circuit

    Full text link
    Electromagnetic signals in circuits consist of discrete photons, though conventional voltage sources can only generate classical fields with a coherent superposition of many different photon numbers. While these classical signals can control and measure bits in a quantum computer (qubits), single photons can carry quantum information, enabling non-local quantum interactions, an important resource for scalable quantum computing. Here, we demonstrate an on-chip single photon source in a circuit quantum electrodynamics (QED) architecture, with a microwave transmission line cavity that collects the spontaneous emission of a single superconducting qubit with high efficiency. The photon source is triggered by a qubit rotation, as a photon is generated only when the qubit is excited. Tomography of both qubit and fluorescence photon shows that arbitrary qubit states can be mapped onto the photon state, demonstrating an ability to convert a stationary qubit into a flying qubit. Both the average power and voltage of the photon source are characterized to verify performance of the system. This single photon source is an important addition to a rapidly growing toolbox for quantum optics on a chip.Comment: 6 pages, 5 figures, hires version at http://www.eng.yale.edu/rslab/papers/single_photon_hires.pd

    Cavity Induced Interfacing of Atoms and Light

    Full text link
    This chapter introduces cavity-based light-matter quantum interfaces, with a single atom or ion in strong coupling to a high-finesse optical cavity. We discuss the deterministic generation of indistinguishable single photons from these systems; the atom-photon entanglement intractably linked to this process; and the information encoding using spatio-temporal modes within these photons. Furthermore, we show how to establish a time-reversal of the aforementioned emission process to use a coupled atom-cavity system as a quantum memory. Along the line, we also discuss the performance and characterisation of cavity photons in elementary linear-optics arrangements with single beam splitters for quantum-homodyne measurements.Comment: to appear as a book chapter in a compilation "Engineering the Atom-Photon Interaction" published by Springer in 2015, edited by A. Predojevic and M. W. Mitchel

    Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer

    Get PDF
    Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95±5% and have potential to serve as the basis of spin-logic and network implementations

    Wild chimpanzees modify modality of gestures according to the strength of social bonds and personal network size

    Get PDF
    Primates form strong and enduring social bonds with others and these bonds have important fitness consequences. However, how different types of communication are associated with different types of social bonds is poorly understood. Wild chimpanzees have a large repertoire of gestures, from visual gestures to tactile and auditory gestures. We used social network analysis to examine the association between proximity bonds (time spent in close proximity) and rates of gestural communication in pairs of chimpanzees when the intended recipient was within 10 m of the signaller. Pairs of chimpanzees with strong proximity bonds had higher rates of visual gestures, but lower rates of auditory long-range and tactile gestures. However, individual chimpanzees that had a larger number of proximity bonds had higher rates of auditory and tactile gestures and lower rates of visual gestures. These results suggest that visual gestures may be an efficient way to communicate with a small number of regular interaction partners, but that tactile and auditory gestures may be more effective at communicating with larger numbers of weaker bonds. Increasing flexibility of communication may have played an important role in managing differentiated social relationships in groups of increasing size and complexity in both primate and human evolution

    Hippocampal synaptic plasticity, spatial memory and anxiety

    Full text link
    • …
    corecore