367 research outputs found

    Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff-Person Syndrome and other movement disorders

    Get PDF
    Background Cerebral palsy (CP) is an heterogeneous group of neurological disorders of movement and/or posture, with an estimated incidence of 1 in 1000 live births. Non-progressive forms of symmetrical, spastic CP have been identified, which show a Mendelian autosomal recessive pattern of inheritance. We recently described the mapping of a recessive spastic CP locus to a 5 cM chromosomal region located at 2q24-31.1, in rare consanguineous families. Methods Here we present data that refine this locus to a 0.5 cM region, flanked by the microsatellite markers D2S2345 and D2S326. The minimal region contains the candidate gene GAD1, which encodes a glutamate decarboxylase isoform (GAD67), involved in conversion of the amino acid and excitatory neurotransmitter glutamate to the inhibitory neurotransmitter γ-aminobutyric acid (GABA). Results A novel amino acid mis-sense mutation in GAD67 was detected, which segregated with CP in affected individuals. Conclusions This result is interesting because auto-antibodies to GAD67 and the more widely studied GAD65 homologue encoded by the GAD2 gene, are described in patients with Stiff-Person Syndrome (SPS), epilepsy, cerebellar ataxia and Batten disease. Further investigation seems merited of the possibility that variation in the GAD1 sequence, potentially affecting glutamate/GABA ratios, may underlie this form of spastic CP, given the presence of anti-GAD antibodies in SPS and the recognised excitotoxicity of glutamate in various contexts

    Effects of Thyroxine Exposure on Osteogenesis in Mouse Calvarial Pre-Osteoblasts

    Get PDF
    The incidence of craniosynostosis is one in every 1,800-2500 births. The gene-environment model proposes that if a genetic predisposition is coupled with environmental exposures, the effects can be multiplicative resulting in severely abnormal phenotypes. At present, very little is known about the role of gene-environment interactions in modulating craniosynostosis phenotypes, but prior evidence suggests a role for endocrine factors. Here we provide a report of the effects of thyroid hormone exposure on murine calvaria cells. Murine derived calvaria cells were exposed to critical doses of pharmaceutical thyroxine and analyzed after 3 and 7 days of treatment. Endpoint assays were designed to determine the effects of the hormone exposure on markers of osteogenesis and included, proliferation assay, quantitative ALP activity assay, targeted qPCR for mRNA expression of Runx2, Alp, Ocn, and Twist1, genechip array for 28,853 targets, and targeted osteogenic microarray with qPCR confirmations. Exposure to thyroxine stimulated the cells to express ALP in a dose dependent manner. There were no patterns of difference observed for proliferation. Targeted RNA expression data confirmed expression increases for Alp and Ocn at 7 days in culture. The genechip array suggests substantive expression differences for 46 gene targets and the targeted osteogenesis microarray indicated 23 targets with substantive differences. 11 gene targets were chosen for qPCR confirmation because of their known association with bone or craniosynostosis (Col2a1, Dmp1, Fgf1, 2, Igf1, Mmp9, Phex, Tnf, Htra1, Por, and Dcn). We confirmed substantive increases in mRNA for Phex, FGF1, 2, Tnf, Dmp1, Htra1, Por, Igf1 and Mmp9, and substantive decreases for Dcn. It appears thyroid hormone may exert its effects through increasing osteogenesis. Targets isolated suggest a possible interaction for those gene products associated with calvarial suture growth and homeostasis as well as craniosynostosis. © 2013 Cray et al

    Knock-Down of Core Proteins Regulating MicroRNA Biogenesis Has No Effect on Sensitivity of Lung Cancer Cells to Ionizing Radiation

    Get PDF
    Recent studies underline the important role of microRNAs (miRNA) in the development of lung cancer. The main regulators of miRNA biogenesis are the ribonucleases Drosha, Dicer and Ago2. Here the role of core proteins of miRNA biogenesis machinery in the response of human non-small and small cell lung carcinoma cell lines to treatment with ionizing radiation was assessed. We found that Drosha and Dicer were expressed at higher levels in radioresistant but not in sensitive cell lines. However, down-regulation of either Dicer or Drosha had no effect on the sensitivity of cells to irradiation. Elimination of components of the RNA-induced silencing complex Ago2 and Tudor staphylococcal nuclease also did not sensitize cells to the same treatment. Thus, modulation of miRNA biogenesis machinery is not sufficient to increase the radiosensitivity of lung tumors and other strategies are required to combat lung cancer

    Analysis of MicroRNA Expression in Embryonic Developmental Toxicity Induced by MC-RR

    Get PDF
    As cynobacterial blooms frequently occur in fresh waters throughout the world, microcystins (MCs) have caused serious damage to both wildlife and human health. MCs are known to have developmental toxicity, however, the possible molecular mechanism is largely unknown. This is the first toxicological study to integrate post-transcriptomic, proteomic and bioinformatics analysis to explore molecular mechanisms for developmental toxicity of MCs in zebrafish. After being microinjected directly into embryos, MC-RR dose-dependently decreased survival rates and increased malformation rates of embryos, causing various embryo abnormalities including loss of vascular integrity and hemorrhage. Expressions of 31 microRNAs (miRNAs) and 78 proteins were significantly affected at 72 hours post-fertilisation (hpf). Expressions of miR-430 and miR-125 families were also significantly changed. The altered expressions of miR-31 and miR-126 were likely responsible for the loss of vascular integrity. MC-RR significantly reduced the expressions of a number of proteins involved in energy metabolism, cell division, protein synthesis, cytoskeleton maintenance, response to stress and DNA replication. Bioinformatics analysis shows that several aberrantly expressed miRNAs and proteins (involved in various molecular pathways) were predicted to be potential MC-responsive miRNA-target pairs, and that their aberrant expressions should be the possible molecular mechanisms for the various developmental defects caused by MC-RR

    Non-Human Primate Model of Kaposi's Sarcoma-Associated Herpesvirus Infection

    Get PDF
    Since Kaposi's sarcoma-associated herpesvirus (KSHV or human herpesvirus 8) was first identified in Kaposi's sarcoma (KS) lesions of HIV-infected individuals with AIDS, the basic biological understanding of KSHV has progressed remarkably. However, the absence of a proper animal model for KSHV continues to impede direct in vivo studies of viral replication, persistence, and pathogenesis. In response to this need for an animal model of KSHV infection, we have explored whether common marmosets can be experimentally infected with human KSHV. Here, we report the successful zoonotic transmission of KSHV into common marmosets (Callithrix jacchus, Cj), a New World primate. Marmosets infected with recombinant KSHV rapidly seroconverted and maintained a vigorous anti-KSHV antibody response. KSHV DNA and latent nuclear antigen (LANA) were readily detected in the peripheral blood mononuclear cells (PBMCs) and various tissues of infected marmosets. Remarkably, one orally infected marmoset developed a KS-like skin lesion with the characteristic infiltration of leukocytes by spindle cells positive for KSHV DNA and proteins. These results demonstrate that human KSHV infects common marmosets, establishes an efficient persistent infection, and occasionally leads to a KS-like skin lesion. This is the first animal model to significantly elaborate the important aspects of KSHV infection in humans and will aid in the future design of vaccines against KSHV and anti-viral therapies targeting KSHV coinfected tumor cells

    Staphylococcus aureus Protein A Binds to Osteoblasts and Triggers Signals That Weaken Bone in Osteomyelitis

    Get PDF
    Osteomyelitis is a debilitating infectious disease of the bone. It is predominantly caused by S. aureus and is associated with significant morbidity and mortality. It is characterised by weakened bones associated with progressive bone loss. Currently the mechanism through which either bone loss or bone destruction occurs in osteomyelitis patients is poorly understood. We describe here for the first time that the major virulence factor of S. aureus, protein A (SpA) binds directly to osteoblasts. This interaction prevents proliferation, induces apoptosis and inhibits mineralisation of cultured osteoblasts. Infected osteoblasts also increase the expression of RANKL, a key protein involved in initiating bone resorption. None of these effects was seen in a mutant of S. aureus lacking SpA. Complementing the SpA-defective mutant with a plasmid expressing spa or using purified protein A resulted in attachment to osteoblasts, inhibited proliferation and induced apoptosis to a similar extent as wildtype S. aureus. These events demonstrate mechanisms through which loss of bone formation and bone weakening may occur in osteomyelitis patients. This new information may pave the way for the development of new and improved therapeutic agents to treat this disease

    P. brasiliensis virulence is affected by SconC, the negative regulator of inorganic sulfur assimilation

    Get PDF
    Conidia/mycelium-to-yeast transition of Paracoccidioidesbrasiliensis is a critical step for the establishment of paracoccidioidomycosis, a systemic mycosis endemic in Latin America. Thus, knowledge of the factors that mediate this transition is of major importance for the design of intervention strategies. So far, the only known pre-requisites for the accomplishment of the morphological transition are the temperature shift to 37°C and the availability of organic sulfur compounds. In this study, we investigated the auxotrophic nature to organic sulfur of the yeast phase of Paracoccidioides, with special attention to P. brasiliensis species. For this, we addressed the role of SconCp, the negative regulator of the inorganic sulfur assimilation pathway, in the dimorphism and virulence of this pathogen. We show that down-regulation of SCONC allows initial steps of mycelium-to-yeast transition in the absence of organic sulfur compounds, contrarily to the wild-type fungus that cannot undergo mycelium-to-yeast transition under such conditions. However, SCONC down-regulated transformants were unable to sustain yeast growth using inorganic sulfur compounds only. Moreover, pulses with inorganic sulfur in SCONC down-regulated transformants triggered an increase of the inorganic sulfur metabolism, which culminated in a drastic reduction of the ATP and NADPH cellular levels and in higher oxidative stress. Importantly, the down-regulation of SCONC resulted in a decreased virulence of P. brasiliensis, as validated in an in vivo model of infection. Overall, our findings shed light on the inability of P. brasiliensis yeast to rely on inorganic sulfur compounds, correlating its metabolism with cellular energy and redox imbalances. Furthermore, the data herein presented reveal SconCp as a novel virulence determinant of P. brasiliensis.J.F.M. and J.G.R. were supported by a PhD grant from Fundacao para a Ciencia e Tecnologia (FCT). This work was supported by a grant from FCT (PTDC/BIA-MIC/108309/2008). M. Sturme. and M. Saraiva are Ciencia 2008 fellows. The authors would also like to thank FAPESP (Fundacao para Amparo a Pesquisa do Estado de Sao Paulo) and CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico) for financial support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    • …
    corecore