3,452 research outputs found

    The Dark Side of Galaxy Color: evidence from new SDSS measurements of galaxy clustering and lensing

    Full text link
    The age matching model has recently been shown to predict correctly the luminosity L and g-r color of galaxies residing within dark matter halos. The central tenet of the model is intuitive: older halos tend to host galaxies with older stellar populations. In this paper, we demonstrate that age matching also correctly predicts the g-r color trends exhibited in a wide variety of statistics of the galaxy distribution for stellar mass M* threshold samples. In particular, we present new measurements of the galaxy two-point correlation function and the galaxy-galaxy lensing signal as a function of M* and g-r color from the Sloan Digital Sky Survey, and show that age matching exhibits remarkable agreement with these and other statistics of low-redshift galaxies. In so doing, we also demonstrate good agreement between the galaxy-galaxy lensing observed by SDSS and the signal predicted by abundance matching, a new success of this model. We describe how age matching is a specific example of a larger class of Conditional Abundance Matching models (CAM), a theoretical framework we introduce here for the first time. CAM provides a general formalism to study correlations at fixed mass between any galaxy property and any halo property. The striking success of our simple implementation of CAM provides compelling evidence that this technique has the potential to describe the same set of data as alternative models, but with a dramatic reduction in the required number of parameters. CAM achieves this reduction by exploiting the capability of contemporary N-body simulations to determine dark matter halo properties other than mass alone, which distinguishes our model from conventional approaches to the galaxy-halo connection.Comment: references added, minor adjustments to text and notatio

    Investigation of a Parabolic Iterative Solver for Three-dimensional Configurations

    Get PDF
    A parabolic iterative solution procedure is investigated that seeks to extend the parabolic approximation used within the internal propagation module of the duct noise propagation and radiation code CDUCT-LaRC. The governing convected Helmholtz equation is split into a set of coupled equations governing propagation in the positive and negative directions. The proposed method utilizes an iterative procedure to solve the coupled equations in an attempt to account for possible reflections from internal bifurcations, impedance discontinuities, and duct terminations. A geometry consistent with the NASA Langley Curved Duct Test Rig is considered and the effects of acoustic treatment and non-anechoic termination are included. Two numerical implementations are studied and preliminary results indicate that improved accuracy in predicted amplitude and phase can be obtained for modes at a cut-off ratio of 1.7. Further predictions for modes at a cut-off ratio of 1.1 show improvement in predicted phase at the expense of increased amplitude error. Possible methods of improvement are suggested based on analytic and numerical analysis. It is hoped that coupling the parabolic iterative approach with less efficient, high fidelity finite element approaches will ultimately provide the capability to perform efficient, higher fidelity acoustic calculations within complex 3-D geometries for impedance eduction and noise propagation and radiation predictions

    Effects of Flow Profile on Educed Acoustic Liner Impedance

    Get PDF
    This paper presents results of an investigation of the effects of shear flow profile on impedance eduction processes employed at NASA Langley. Uniform and 1-D shear-flow propagation models are used to educe the acoustic impedance of three test liners based on aeroacoustic data acquired in the Langley Grazing Flow Impedance Tube, at source levels of 130, 140 and 150 dB, and at centerline Mach numbers of 0.0, 0.3 and 0.5. A ceramic tubular, calibration liner is used to evaluate the propagation models, as this liner is expected to be insensitive to SPL, grazing flow Mach number, and flow profile effects. The propagation models are then used to investigate the effects of shear flow profile on acoustic impedances educed for two conventional perforate-over-honeycomb liners. Results achieved with the uniform-flow models follow expected trends, but those educed with the 1-D shear-flow model do not, even for the calibration liner. However, when the flow profile used with the shear-flow model is varied to increase the Mach number gradient near the wall, results computed with the shear-flow model are well matched to those achieved with the uniform-flow model. This indicates the effects of flow profile on educed acoustic liner impedance are small, but more detailed investigations of the flow field throughout the duct are needed to better understand these effects

    Further Investigation of Acoustic Propagation Codes for Three-Dimensional Geometries

    Get PDF
    The ability to predict fan noise within complex three-dimensional aircraft engine nacelle geometries is a valuable tool in designing and assessing low-noise concepts. This work begins a systematic study to identify the areas of the design space in which propagation codes of varying fidelity may be used effectively to provide efficient design and assessment. An efficient lower-fidelity code is used in conjunction with two higher-fidelity, more computationally intensive methods to solve benchmark problems of increasing complexity. The codes represent a small sampling of the current propagation codes available or under development. Results of this initial study indicate that the lower-fidelity code provides satisfactory results for cases involving low to moderate attenuation rates, whereas, the two higher-fidelity codes perform well across the range of problems

    Modelling of root reinforcement and erosion control by ‘Veronese’ poplar on pastoral hill country in New Zealand

    Get PDF
    Background The control of erosion processes is an important issue worldwide. In New Zealand, previous studies have shown the benefits of reforestation or bioengineering measures to control erosion. The impetus for this work focuses on linking recent research to the needs of practitioners by formulating quantitative guidelines for planning and evaluation of ground bioengineering stabilisation measures. Methods Two root distribution datasets of ‘Veronese’ poplar (Populus deltoides x nigra) were used to calibrate a root distribution model for application on single root systems and to interacting root systems at the hillslope scale. The root distribution model results were then used for slope stability calculations in order to quantitatively evaluate the mechanical stabilisation effects of spaced trees on pastoral hillslopes. Results This study shows that root distribution data are important inputs for quantifying root reinforcement at the hillslope scale, and that root distribution strongly depends on local environmental conditions and on the tree planting density. The results also show that the combination of soil mechanical properties (soil angle of internal friction and cohesion) and topographic conditions (slope inclination) are the major parameters to define how much root reinforcement is needed to stabilise a specific slope, and thus the spacing of the trees to achieve this. Conclusions For the worst scenarios, effective root reinforcement (>2 kPa) is reached for tree spacing ranging from 2500 stems per hectare (sph) for 0.1 m stem diameter at breast height (DBH) to 300 sph for 0.3 m stem DBH. In ideal growing conditions, tree spacing less than 100 sph is sufficient for stem DBH greater than 0.15 m. New quantitative information gained from this study can provide a basis for evaluating planting strategies using poplar trees for erosion control on pastoral hill country in New Zealand

    Regulation of ecdysone biosynthesis in the tobacco hornworm, Manduca sexta: titre of the haemolymph stimulatory factor during the last larval instar

    Get PDF
    A recently isolated haemolymph protein appears to be an important regulator of ecdysone biosynthesis by prothoracic glands in Manduca sexta. Using a dose-response titration protocol, the haemolymph titre of this stimulatory factor was determined during the last larval instar. The titre was high (greater than 2.0 U ml-1) on days 0 and 1, then dropped significantly to 0.55 U ml-1 on day 2, and remained depressed until day 4. The titre of the stimulatory factor then increased to a peak of 1.62 U ml-1 on day 7, and remained elevated (approx. 1.1 U ml-1) until the end of the instar. A set of physical and biochemical criteria was used to confirm that the stimulatory activity present in haemolymph on different days of the instar represented the presence of the factor. The data are consistent with the hypothesis that fluctuations in the titre of the haemolymph stimulatory factor play a critical role in regulating ecdysone biosynthesis during larval-pupal development

    Spitzer IRAC observations of newly-discovered planetary nebulae from the Macquarie-AAO-Strasbourg H-alpha Planetary Nebula Project

    Full text link
    We compare H-alpha, radio continuum, and Spitzer Space Telescope (SST) images of 58 planetary nebulae (PNe) recently discovered by the Macquarie-AAO-Strasbo- urg H-alpha PN Project (MASH) of the SuperCOSMOS H-alpha Survey. Using InfraRed Array Camera (IRAC) data we define the IR colors of PNe and demonstrate good isolation between these colors and those of many other types of astronomical object. The only substantive contamination of PNe in the color-color plane we illustrate is due to YSOs. However, this ambiguity is readily resolved by the unique optical characteristics of PNe and their environs. We also examine the relationships between optical and MIR morphologies from 3.6 to 8.0um and explore the ratio of mid-infrared (MIR) to radio nebular fluxes, which is a valuable discriminant between thermal and nonthermal emission. MASH emphasizes late evolutionary stages of PNe compared with previous catalogs, enabling study of the changes in MIR and radio flux that attend the aging process. Spatially integrated MIR energy distributions were constructed for all MASH PNe observed by the GLIMPSE Legacy Project, using the H-alpha morphologies to establish the dimensions for the calculations of the Midcourse Space Experiment (MSX), IRAC, and radio continuum (from the Molonglo Observatory Synthesis Telescope and the Very Large Array) flux densities. The ratio of IRAC 8.0-um to MSX 8.3-um flux densities provides a measure of the absolute diffuse calibration of IRAC at 8.0 um. We independently confirm the aperture correction factor to be applied to IRAC at 8.0um to align it with the diffuse calibration of MSX. The result agrees with the recommendations of the Spitzer Science Center and with results from a parallel study of HII regions. These PNe probe the diffuse calibration of IRAC on a spatial scale of 9-77 arcsec.Comment: 48 pages, LaTeX (aastex), incl. 18 PostScript (eps) figures and 3 tables. Accepted by Astrophysical Journa

    A New Spin on Galactic Dust

    Full text link
    We present a new puzzle involving Galactic microwave emission and attempt to resolve it. On one hand, a cross-correlation analysis of the WHAM H-alpha map with the Tenerife 10 and 15 GHz maps shows that the well-known DIRBE correlated microwave emission cannot be dominated by free-free emission. On the other hand, recent high resolution observations in the 8-10 GHz range with the Green Bank 140 ft telescope by Finkbeiner et al. failed to find the corresponding 8 sigma signal that would be expected in the simplest spinning dust models. So what physical mechanism is causing this ubiquitous dust-correlated emission? We argue for a model predicting that spinning dust is the culprit after all, but that the corresponding small grains are well correlated with the larger grains seen at 100 micron only on large angular scales. In support of this grain segregation model, we find the best spinning dust template to involve higher frequency maps in the range 12-60 micron, where emission from transiently heated small grains is important. Upcoming CMB experiments such as ground-based interferometers, MAP and Planck LFI with high resolution at low frequencies should allow a definitive test of this model.Comment: Minor revisions to match accepted ApJ version. 6 pages, 4 figs. Color figures and more foreground information at http://www.hep.upenn.edu/~angelica/foreground.html#spin or from [email protected]

    Parity and breast cancer risk among BRCA1 and BRCA2 mutation carriers.

    Get PDF
    INTRODUCTION: Increasing parity and age at first full-term pregnancy are established risk factors for breast cancer in the general population. However, their effects among BRCA1 and BRCA2 mutation carriers is still under debate. We used retrospective data on BRCA1 and BRCA2 mutation carriers from the UK to assess the effects of parity-related variables on breast cancer risk. METHODS: The data set included 457 mutation carriers who developed breast cancer (cases) and 332 healthy mutation carriers (controls), ascertained through families seen in genetic clinics. Hazard ratios were estimated by using a weighted cohort approach. RESULTS: Parous BRCA1 and BRCA2 mutation carriers were at a significantly lower risk of developing breast cancer (hazard ratio 0.54, 95% confidence interval 0.37 to 0.81; p = 0.002). The protective effect was observed only among carriers who were older than 40 years. Increasing age at first live birth was associated with an increased breast cancer risk among BRCA2 mutation carriers (p trend = 0.002) but not BRCA1 carriers. However, the analysis by age at first live birth was based on small numbers. CONCLUSION: The results suggest that the relative risks of breast cancer associated with parity among BRCA1 and BRCA2 mutation carriers may be similar to those in the general population and that reproductive history may be used to improve risk prediction in carriers.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Development of Experimental and Computational Aeroacoustic Tools for Advanced Liner Evaluation

    Get PDF
    Acoustic liners in aircraft engine nacelles suppress radiated noise. Therefore, as air travel increases, increasingly sophisticated tools are needed to maximize noise suppression. During the last 30 years, NASA has invested significant effort in development of experimental and computational acoustic liner evaluation tools. The Curved Duct Test Rig is a 152-mm by 381- mm curved duct that supports liner evaluation at Mach numbers up to 0.3 and source SPLs up to 140 dB, in the presence of user-selected modes. The Grazing Flow Impedance Tube is a 51- mm by 63-mm duct currently being fabricated to operate at Mach numbers up to 0.6 with source SPLs up to at least 140 dB, and will replace the existing 51-mm by 51-mm duct. Together, these test rigs allow evaluation of advanced acoustic liners over a range of conditions representative of those observed in aircraft engine nacelles. Data acquired with these test ducts are processed using three aeroacoustic propagation codes. Two are based on finite element solutions to convected Helmholtz and linearized Euler equations. The third is based on a parabolic approximation to the convected Helmholtz equation. The current status of these computational tools and their associated usage with the Langley test rigs is provided
    corecore