423 research outputs found

    Critical Exponents and Stability at the Black Hole Threshold for a Complex Scalar Field

    Full text link
    This paper continues a study on Choptuik scaling in gravitational collapse of a complex scalar field at the threshold for black hole formation. We perform a linear perturbation analysis of the previously derived complex critical solution, and calculate the critical exponent for black hole mass, γ≈0.387106\gamma \approx 0.387106. We also show that this critical solution is unstable via a growing oscillatory mode.Comment: 15 pages of latex/revtex; added details of numerics, in press in Phys Rev D; 1 figure included, or available by anonymous ftp to ftp://ftp.itp.ucsb.edu/figures/nsf-itp-95-58.ep

    Criticality and Bifurcation in the Gravitational Collapse of a Self-Coupled Scalar Field

    Get PDF
    We examine the gravitational collapse of a non-linear sigma model in spherical symmetry. There exists a family of continuously self-similar solutions parameterized by the coupling constant of the theory. These solutions are calculated together with the critical exponents for black hole formation of these collapse models. We also find that the sequence of solutions exhibits a Hopf-type bifurcation as the continuously self-similar solutions become unstable to perturbations away from self-similarity.Comment: 18 pages; one figure, uuencoded postscript; figure is also available at http://www.physics.ucsb.edu/people/eric_hirschman

    New bounds for Tsallis parameter in a noncommutative phase-space entropic gravity and nonextensive Friedmann equations

    Full text link
    In this paper, we have analyzed the nonextensive Tsallis statistical mechanics in the light of Verlinde's formalism. We have obtained, with the aid of a noncommutative phase-space entropic gravity, a new bound for Tsallis nonextensive (NE) parameter (TNP) that is clearly different from the ones present in the current literature. We derived the Friedmann equations in a NE scenario. We also obtained here a relation between the gravitational constant and the TNP.Comment: 15 pages. Final version to appear in Physica

    Deconfinement Transition for Quarks on a Line

    Get PDF
    We examine the statistical mechanics of a 1-dimensional gas of both adjoint and fundamental representation quarks which interact with each other through 1+1-dimensional U(N) gauge fields. Using large-N expansion we show that, when the density of fundamental quarks is small, there is a first order phase transition at a critical temperature and adjoint quark density which can be interpreted as deconfinement. When the fundamental quark density is comparable to the adjoint quark density, the phase transition becomes a third order one. We formulate a way to distinguish the phases by considering the expectation values of high winding number Polyakov loop operators.Comment: Reported problems with figures fixed; 38 pages, LaTeX, 5 figures, epsfi

    Thermodynamics of doubly charged CGHS model and D1-D5-KK black holes of IIB supergravity

    Get PDF
    We study the doubly charged Callan-Giddings-Harvey-Strominger (CGHS) model, which has black hole solutions that were found to be U-dual to the D1-D5-KK black holes of the IIB supergravity. We derive the action of the model via a spontaneous compactification on S^3 of the IIB supergravity on S^1*T^4 and obtain the general static solutions including black holes corresponding to certain non-asymptotically flat black holes in the IIB supergravity. Thermodynamics of them is established by computing the entropy, temperature, chemical potentials, and mass in the two-dimensional setup, and the first law of thermodynamics is explicitly verified. The entropy is in precise agreement with that of the D1-D5-KK black holes, and the mass turns out to be consistent with the infinite Lorentz boost along the M theory circle that is a part of the aforementioned U-dual chain.Comment: 21 pages, Revte

    Observational Consequences of a Landscape

    Full text link
    In this paper we consider the implications of the "landscape" paradigm for the large scale properties of the universe. The most direct implication of a rich landscape is that our local universe was born in a tunnelling event from a neighboring vacuum. This would imply that we live in an open FRW universe with negative spatial curvature. We argue that the "overshoot" problem, which in other settings would make it difficult to achieve slow roll inflation, actually favors such a cosmology. We consider anthropic bounds on the value of the curvature and on the parameters of inflation. When supplemented by statistical arguments these bounds suggest that the number of inflationary efolds is not very much larger than the observed lower bound. Although not statistically favored, the likelihood that the number of efolds is close to the bound set by observations is not negligible. The possible signatures of such a low number of efolds are briefly described.Comment: 21 pages, 4 figures v2: references adde

    Granular discharge and clogging for tilted hoppers

    Full text link
    We measure the flux of spherical glass beads through a hole as a systematic function of both tilt angle and hole diameter, for two different size beads. The discharge increases with hole diameter in accord with the Beverloo relation for both horizontal and vertical holes, but in the latter case with a larger small-hole cutoff. For large holes the flux decreases linearly in cosine of the tilt angle, vanishing smoothly somewhat below the angle of repose. For small holes it vanishes abruptly at a smaller angle. The conditions for zero flux are discussed in the context of a {\it clogging phase diagram} of flow state vs tilt angle and ratio of hole to grain size

    Self-dual noncommutative \phi^4-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory

    Full text link
    We study quartic matrix models with partition function Z[E,J]=\int dM \exp(trace(JM-EM^2-(\lambda/4)M^4)). The integral is over the space of Hermitean NxN-matrices, the external matrix E encodes the dynamics, \lambda>0 is a scalar coupling constant and the matrix J is used to generate correlation functions. For E not a multiple of the identity matrix, we prove a universal algebraic recursion formula which gives all higher correlation functions in terms of the 2-point function and the distinct eigenvalues of E. The 2-point function itself satisfies a closed non-linear equation which must be solved case by case for given E. These results imply that if the 2-point function of a quartic matrix model is renormalisable by mass and wavefunction renormalisation, then the entire model is renormalisable and has vanishing \beta-function. As main application we prove that Euclidean \phi^4-quantum field theory on four-dimensional Moyal space with harmonic propagation, taken at its self-duality point and in the infinite volume limit, is exactly solvable and non-trivial. This model is a quartic matrix model, where E has for N->\infty the same spectrum as the Laplace operator in 4 dimensions. Using the theory of singular integral equations of Carleman type we compute (for N->\infty and after renormalisation of E,\lambda) the free energy density (1/volume)\log(Z[E,J]/Z[E,0]) exactly in terms of the solution of a non-linear integral equation. Existence of a solution is proved via the Schauder fixed point theorem. The derivation of the non-linear integral equation relies on an assumption which we verified numerically for coupling constants 0<\lambda\leq (1/\pi).Comment: LaTeX, 64 pages, xypic figures. v4: We prove that recursion formulae and vanishing of \beta-function hold for general quartic matrix models. v3: We add the existence proof for a solution of the non-linear integral equation. A rescaling of matrix indices was necessary. v2: We provide Schwinger-Dyson equations for all correlation functions and prove an algebraic recursion formula for their solutio

    An action for the exact string black hole

    Full text link
    A local action is constructed describing the exact string black hole discovered by Dijkgraaf, Verlinde and Verlinde in 1992. It turns out to be a special 2D Maxwell-dilaton gravity theory, linear in curvature and field strength. Two constants of motion exist: mass M>1, determined by the level k, and U(1)-charge Q>0, determined by the value of the dilaton at the origin. ADM mass, Hawking temperature T_H \propto \sqrt{1-1/M} and Bekenstein-Hawking entropy are derived and studied in detail. Winding/momentum mode duality implies the existence of a similar action, arising from a branch ambiguity, which describes the exact string naked singularity. In the strong coupling limit the solution dual to AdS_2 is found to be the 5D Schwarzschild black hole. Some applications to black hole thermodynamics and 2D string theory are discussed and generalizations - supersymmetric extension, coupling to matter and critical collapse, quantization - are pointed out.Comment: 41 pages, 2 eps figures, dedicated to Wolfgang Kummer on occasion of his Emeritierung; v2: added ref; v3: extended discussion in sections 3.2, 3.3 and at the end of 5.3 by adding 2 pages of clarifying text; updated refs; corrected typo

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm
    • 

    corecore