642 research outputs found

    Islands in the landscape

    Get PDF
    The string theory landscape consists of many metastable de Sitter vacua, populated by eternal inflation. Tunneling between these vacua gives rise to a dynamical system, which asymptotically settles down to an equilibrium state. We investigate the effects of sinks to anti-de Sitter space, and show how their existence can change probabilities in the landscape. Sinks can disturb the thermal occupation numbers that would otherwise exist in the landscape and may cause regions that were previously in thermal contact to be divided into separate, thermally isolated islands.Comment: 31 pages, 8 figure

    Instanton calculus in R-R background and the topological string

    Get PDF
    We study a system of fractional D3 and D(-1) branes in a Ramond-Ramond closed string background and show that it describes the gauge instantons of N=2 super Yang-Mills theory and their interactions with the graviphoton of N=2 supergravity. In particular, we analyze the instanton moduli space using string theory methods and compute the prepotential of the effective gauge theory exploiting the localization methods of the instanton calculus showing that this leads to the same information given by the topological string. We also comment on the relation between our approach and the so-called Omega-background.Comment: 38 pages, 2 figures, JHEP class (included); final version to be pubished in JHE

    Noncommutative Differential Calculus for D-brane in Non-Constant B Field Background

    Get PDF
    In this paper we try to construct noncommutative Yang-Mills theory for generic Poisson manifolds. It turns out that the noncommutative differential calculus defined in an old work is exactly what we need. Using this calculus, we generalize results about the Seiberg-Witten map, the Dirac-Born-Infeld action, the matrix model and the open string quantization for constant B field to non-constant background with H=0.Comment: 21 pages, Latex file, references added, minor modificatio

    On Stable Sector in Supermembrane Matrix Model

    Get PDF
    We study the spectrum of SU(2) x SO(2) matrix supersymmetric quantum mechanics. We use angular coordinates that allow us to find an explicit solution of the Gauss law constraints and single out the quantum number n (the Lorentz angular momentum). Energy levels are four-fold degenerate with respect to n and are labeled by n_q, the largest n in a quartet. The Schr\"odinger equation is reduced to two different systems of two-dimensional partial differential equations. The choice of a system is governed by n_q. We present the asymptotic solutions for the systems deriving thereby the asymptotic formula for the spectrum. Odd n_q are forbidden, for even n_q the spectrum has a continuous part as well as a discrete one, meanwhile for half-integer n_q the spectrum is purely discrete. Taking half-integer n_q one can cure the model from instability caused by the presence of continuous spectrum.Comment: 29 pages, 5 figure

    Schwinger type processes via branes and their gravity duals

    Get PDF
    We consider Schwinger type processes involving the creation of the charge and monopole pairs in the external fields and propose interpretation of these processes via corresponding brane configurations in Type IIB string theory. We suggest simple description of some new interesting nonperturbative processes like monopole/dyon transitions in the electric field and W-boson decay in the magnetic field using the brane language. Nonperturbative pair production in the strong coupling regime using the AdS/CFT correspondence is studied. The treatment of the similar processes in the noncommutative theories when noncommutativity is traded for the background fields is presented and the possible role of the critical magnetic field which is S-dual to the critical electric field is discussed.Comment: 29pp, LaTeX; v3. reference adde

    Aharonov-Casher effect for spin one particles in a noncommutative space

    Get PDF
    In this work the Aharonov-Casher (AC) phase is calculated for spin one particles in a noncommutative space. The AC phase has previously been calculated from the Dirac equation in a noncommutative space using a gauge-like technique [17]. In the spin-one, we use kemmer equation to calculate the phase in a similar manner. It is shown that the holonomy receives non-trivial kinematical corrections. By comparing the new result with the already known spin 1/2 case, one may conjecture a generalized formula for the corrections to holonomy for higher spins.Comment: 9 page

    A note on instanton counting for N=2 gauge theories with classical gauge groups

    Full text link
    We study the prepotential of N=2 gauge theories using the instanton counting techniques introduced by Nekrasov. For the SO theories without matter we find a closed expression for the full prepotential and its string theory gravitational corrections. For the more subtle case of Sp theories without matter we discuss general features and compute the prepotential up to instanton number three. We also briefly discuss SU theories with matter in the symmetric and antisymmetric representations. We check all our results against the predictions of the corresponding Seiberg-Witten geometries.Comment: 24 pages, LaTeX. v2: refs added. v3: typos correcte

    Effective Field Theories on Non-Commutative Space-Time

    Get PDF
    We consider Yang-Mills theories formulated on a non-commutative space-time described by a space-time dependent anti-symmetric field θμν(x)\theta^{\mu\nu}(x). Using Seiberg-Witten map techniques we derive the leading order operators for the effective field theories that take into account the effects of such a background field. These effective theories are valid for a weakly non-commutative space-time. It is remarkable to note that already simple models for θμν(x)\theta^{\mu\nu}(x) can help to loosen the bounds on space-time non-commutativity coming from low energy physics. Non-commutative geometry formulated in our framework is a potential candidate for new physics beyond the standard model.Comment: 22 pages, 1 figur

    D-brane Instantons on the T^6/Z_3 orientifold

    Full text link
    We give a detailed microscopic derivation of gauge and stringy instanton generated superpotentials for gauge theories living on D3-branes at Z_3-orientifold singularities. Gauge instantons are generated by D(-1)-branes and lead to Affleck, Dine and Seiberg (ADS) like superpotentials in the effective N=1 gauge theories with three generations of bifundamental and anti/symmetric matter. Stringy instanton effects are generated by Euclidean ED3-branes wrapping four-cycles on T^6/\Z_3. They give rise to Majorana masses in one case and non-renormalizable superpotentials for the other cases. Finally we determine the conditions under which ADS like superpotentials are generated in N=1 gauge theories with adjoints, fundamentals, symmetric and antisymmetric chiral matter.Comment: 31 pages, no figure
    corecore