298 research outputs found
Polymeric Separator Synthesis for Lithium-Air Batteries
Battery electricity storage has been one of the main strategies to reach a sustainable energy network. They are adequate to store energy and release it later, supporting a high volume of variable renewable electricity. In this context, lithium-air batteries (LABs) have the potential to be a high-capacity battery option, with theoretical energy densities higher than currently available lithium-ion ones. However, they are still commercially unfeasible. In the last few decades, there has been immense progress in LABs technology with the development of stable electrolytes, porous cathodes, and catalysts. Nonetheless, minor attention has been given to the protection of the lithium metal electrode, especially against reactive substances present in the atmospheric air, such as water and oxygen. In this work, a protective membrane was synthesized to protect the metallic lithium anode against water. The synthesis was carried out using polytetramethylene glycol (PTMEG), 4,4-diphenylmethane diisocyanate (MDI), and a blend of 1,4 butanediol with glycerine as a chain extender. The synthesized membrane was tested using an aprotic lithium-oxygen (Li-O2) battery assembled with carbon paper as the cathode, metallic lithium as the anode, and 0.1 mol.L-1 lithium perchlorate (LiClO4) in dimethyl sulfoxide (DMSO) with 550 ppm of water concentration as electrolyte. Furthermore, the cyclability of the batteries with the novel polymeric membrane was compared with the standard glass microfiber separator. The results showed a higher cyclability of the batteries assembled with the polymeric separator over the glass microfiber separator.</p
Development of a custom on-line ultrasonic vapour analyzer/flowmeter for the ATLAS inner detector, with application to gaseous tracking and Cherenkov detectors
Precision sound velocity measurements can simultaneously determine binary gas
composition and flow. We have developed an analyzer with custom electronics,
currently in use in the ATLAS inner detector, with numerous potential
applications. The instrument has demonstrated ~0.3% mixture precision for
C3F8/C2F6 mixtures and < 10-4 resolution for N2/C3F8 mixtures. Moderate and
high flow versions of the instrument have demonstrated flow resolutions of +/-
2% F.S. for flows up to 250 l.min-1, and +/- 1.9% F.S. for linear flow
velocities up to 15 ms-1; the latter flow approaching that expected in the
vapour return of the thermosiphon fluorocarbon coolant recirculator being built
for the ATLAS silicon tracker.Comment: Paper submitted to TWEPP2012; Topical Workshop on Electronics for
Particle Physics, Oxford, UK, September 17-21, 2012. KEYWORDS: Sonar;
Saturated fluorocarbons; Flowmetry; Sound velocity, Gas mixture analysis. 8
pages, 7 figure
Storm impacts on phytoplankton community dynamics in lakes
In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short‐term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well‐developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short‐ and long‐term. We summarize the current understanding of storm‐induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions
Coagulation Tests and Selected Biochemical Analytes in Dairy Cows with Hepatic Lipidosis
The aim of this study was to determine the values and changes in conventional and optimised clotting tests, as well as in selected biochemical analytes during hepatic lipidosis in postpartum dairy cows. Ten healthy and ten Holstein cows with hepatic lipidosis were selected based upon clinical history, clinical examination, liver biopsy, flotation test and histological analysis of hepatic tissue. Prothrombin time (PT) and partial thromboplastin time (PTT) were determined in non-diluted and diluted blood plasma samples. Clotting times determined in diluted plasma samples were prolonged in cows with hepatic lipidosis and there was a difference in the PT value at both 50% and 25% plasma dilutions between both groups of animals (P = 0.004 and P = 0.001). Significant differences between healthy animals and cows with hepatic lipidosis were observed in blood serum values for free fatty acids (FFA), aspartate aminotransferase (AST) and triacyglycerols (P = 0.001, P = 0.007 and P = 0.044), respectively. FFA and liver biopsy are better diagnostic indicators for hepatic lipidosis than coagulation tests. The optimised PT is prolonged in cows with hepatic lipidosis and can detect this alteration that cannot be appreciated using conventional PT test
Data Descriptor : Long-term chloride concentrations in North American and European freshwater lakes
Anthropogenic sources of chloride in a lake catchment, including road salt, fertilizer, and wastewater, can elevate the chloride concentration in freshwater lakes above background levels. Rising chloride concentrations can impact lake ecology and ecosystem services such as fisheries and the use of lakes as drinking water sources. To analyze the spatial extent and magnitude of increasing chloride concentrations in freshwater lakes, we amassed a database of 529 lakes in Europe and North America that had greater than or equal to ten years of chloride data. For each lake, we calculated climate statistics of mean annual total precipitation and mean monthly air temperatures from gridded global datasets. We also quantified land cover metrics, including road density and impervious surface, in buffer zones of 100 to 1,500m surrounding the perimeter of each lake. This database represents the largest global collection of lake chloride data. We hope that long-term water quality measurements in areas outside Europe and North America can be added to the database as they become available in the future.Peer reviewe
Diamond Detectors for the TOTEM Timing Upgrade
This paper describes the design and the performance of the timing detector
developed by the TOTEM Collaboration for the Roman Pots (RPs) to measure the
Time-Of-Flight (TOF) of the protons produced in central diffractive
interactions at the LHC. The measurement of the TOF of the protons allows the
determination of the longitudinal position of the proton interaction vertex and
its association with one of the vertices reconstructed by the CMS detectors.
The TOF detector is based on single crystal Chemical Vapor Deposition (scCVD)
diamond plates and is designed to measure the protons TOF with about 50 ps time
precision. This upgrade to the TOTEM apparatus will be used in the LHC run 2
and will tag the central diffractive events up to an interaction pileup of
about 1. A dedicated fast and low noise electronics for the signal
amplification has been developed. The digitization of the diamond signal is
performed by sampling the waveform. After introducing the physics studies that
will most profit from the addition of these new detectors, we discuss in detail
the optimization and the performance of the first TOF detector installed in the
LHC in November 2015.Comment: 26 pages, 18 figures, 2 tables, submitted for publication to JINS
LHC Optics Measurement with Proton Tracks Detected by the Roman Pots of the TOTEM Experiment
Precise knowledge of the beam optics at the LHC is crucial to fulfil the
physics goals of the TOTEM experiment, where the kinematics of the scattered
protons is reconstructed with the near-beam telescopes -- so-called Roman Pots
(RP). Before being detected, the protons' trajectories are influenced by the
magnetic fields of the accelerator lattice. Thus precise understanding of the
proton transport is of key importance for the experiment. A novel method of
optics evaluation is proposed which exploits kinematical distributions of
elastically scattered protons observed in the RPs. Theoretical predictions, as
well as Monte Carlo studies, show that the residual uncertainty of this optics
estimation method is smaller than 0.25 percent.Comment: 20 pages, 11 figures, 5 figures, to be submitted to New J. Phy
Evidence for non-exponential elastic proton-proton differential cross-section at low |t| and sqrt(s) = 8 TeV by TOTEM
The TOTEM experiment has made a precise measurement of the elastic
proton-proton differential cross-section at the centre-of-mass energy sqrt(s) =
8 TeV based on a high-statistics data sample obtained with the beta* = 90
optics. Both the statistical and systematic uncertainties remain below 1%,
except for the t-independent contribution from the overall normalisation. This
unprecedented precision allows to exclude a purely exponential differential
cross-section in the range of four-momentum transfer squared 0.027 < |t| < 0.2
GeV^2 with a significance greater than 7 sigma. Two extended parametrisations,
with quadratic and cubic polynomials in the exponent, are shown to be well
compatible with the data. Using them for the differential cross-section
extrapolation to t = 0, and further applying the optical theorem, yields total
cross-section estimates of (101.5 +- 2.1) mb and (101.9 +- 2.1) mb,
respectively, in agreement with previous TOTEM measurements.Comment: Final version published in Nuclear Physics
Performance of the TOTEM Detectors at the LHC
The TOTEM Experiment is designed to measure the total proton-proton
cross-section with the luminosity-independent method and to study elastic and
diffractive pp scattering at the LHC. To achieve optimum forward coverage for
charged particles emitted by the pp collisions in the interaction point IP5,
two tracking telescopes, T1 and T2, are installed on each side of the IP in the
pseudorapidity region 3.1 < = |eta | < = 6.5, and special movable beam-pipe
insertions - called Roman Pots (RP) - are placed at distances of +- 147 m and
+- 220 m from IP5. This article describes in detail the working of the TOTEM
detector to produce physics results in the first three years of operation and
data taking at the LHC.Comment: 40 pages, 31 figures, submitted to Int. J. Mod. Phys.
Elastic Scattering and Total Cross-Section in p+p reactions measured by the LHC Experiment TOTEM at sqrt(s) = 7 TeV
Proton-proton elastic scattering has been measured by the TOTEM experiment at
the CERN Large Hadron Collider at TeV in special runs with the
Roman Pot detectors placed as close to the outgoing beam as seven times the
transverse beam size. The differential cross-section measurements are reported
in the |t|-range of 0.36 to 2.5 GeV^2. Extending the range of data to low t
values from 0.02 to 0.33 GeV^2,and utilizing the luminosity measurements of
CMS, the total proton-proton cross section at sqrt(s) = 7 TeV is measured to be
(98.3 +- 0.2(stat) +- 2.8(syst)) mb.Comment: Proceedings of the XLI International Symposium on Multiparticle
Dynamics. Accepted for publication in Prog. Theor. Phy
- …