722 research outputs found

    LDPC ARCHITECTURE IMPLEMENTATION BY REDUCING THE MEMORY UTILIZATION

    Get PDF
    As the low density parity check codes has proved their accuracy in error correcting .considering the ldpc as reference the architecture of ldpc is studied .ldpc coding contains check nodes and variable nodes which has their memory elements respectively .so an efficient use of memory can decrease the computation time. Further the arrays of memory requirement has been decreased by making the memory global to all the nodes . ldpc is considered as a finite state machine in which each node is a state .An efficient memory utilization method has been proposed to decrease the memory utilization in the fpga

    Expanding the Repertoire of Natural Product-Inspired Ring Pairs for Molecular Recognition of DNA

    Get PDF
    A furan amino acid, inspired by the recently discovered proximicin natural products, was incorporated into the scaffold of a DNA-binding hairpin polyamide. While unpaired oligomers of 2,4-disubstituted furan amino acids show poor DNA-binding activity, furan (Fn) carboxamides paired with N-methylpyrrole (Py) and N-methylimidazole (Im) rings demonstrate excellent stabilization of duplex DNA as well as discrimination of noncognate sequences, consistent with function as a Py mimic according to the Py/Im polyamide pairing rules

    Fragment Flow and the Nuclear Equation of State

    Full text link
    We use the Boltzmann-Uehling-Uhlenbeck model with a momentum-dependent nuclear mean field to simulate the dynamical evolution of heavy ion collisions. We re-examine the azimuthal anisotropy observable, proposed as sensitive to the equation of state of nuclear matter. We obtain that this sensitivity is maximal when the azimuthal anisotropy is calculated for nuclear composite fragments, in agreement with some previous calculations. As a test case we concentrate on semi-central 197Au + 197Au^{197}{\rm Au}\ +\ ^{197}{\rm Au} collisions at 400 AA MeV.Comment: 12 pages, ReVTeX 3.0. 12 Postscript figures, uuencoded and appende

    Neutrons from multiplicity-selected La-La and Nb-Nb collisions at 400A MeV and La-La collisions at 250A MeV

    Full text link
    Triple-differential cross sections for neutrons from high-multiplicity La-La collisions at 250 and 400 MeV per nucleon and Nb-Nb collisions at 400 MeV per nucleon were measured at several polar angles as a function of the azimuthal angle with respect to the reaction plane of the collision. The reaction plane was determined by a transverse-velocity method with the capability of identifying charged-particles with Z=1, Z=2, and Z > 2. The flow of neutrons was extracted from the slope at mid-rapidity of the curve of the average in-plane momentum vs the center-of-mass rapidity. The squeeze-out of the participant neutrons was observed in a direction normal to the reaction plane in the normalized momentum coordinates in the center-of-mass system. Experimental results of the neutron squeeze-out were compared with BUU calculations. The polar-angle dependence of the maximum azimuthal anisotropy ratio r(θ)r(\theta) was found to be insensitive to the mass of the colliding nuclei and the beam energy. Comparison of the observed polar-angle dependence of the maximum azimuthal anisotropy ratio r(θ)r(\theta) with BUU calculations for free neutrons revealed that r(θ)r(\theta) is insensitive also to the incompressibility modulus in the nuclear equation of state.Comment: ReVTeX, 16 pages, 17 figures. To be published in Physical Review

    The importance of initial-final state correlations for the formation of fragments in heavy ion collisions

    Get PDF
    Using quantum molecular dynamics simulations, we investigate the formation of fragments in symmetric reactions between beam energies of E=30AMeV and 600AMeV. After a comparison with existing data we investigate some observables relevant to tackle equilibration: dsigma/dErat, the double differential cross section dsigma/pt.dpz.dpt,... Apart maybe from very energetic E>400AMeV and very central reactions, none of our simulations gives evidence that the system passes through a state of equilibrium. Later, we address the production mechanisms and find that, whatever the energy, nucleons finally entrained in a fragment exhibit strong initial-final state correlations, in coordinate as well as in momentum space. At high energy those correlations resemble the ones obtained in the participant-spectator model. At low energy the correlations are equally strong, but more complicated; they are a consequence of the Pauli blocking of the nucleon-nucleon collisions, the geometry, and the excitation energy. Studying a second set of time-dependent variables (radii, densities,...), we investigate in details how those correlations survive the reaction especially in central reactions where the nucleons have to pass through the whole system. It appears that some fragments are made of nucleons which were initially correlated, whereas others are formed by nucleons scattered during the reaction into the vicinity of a group of previously correlated nucleons.Comment: 45 pages text + 20 postscript figures Accepted for publication in Physical Review

    Effects of Compression and Collective Expansion on Particle Emission from Central Heavy-Ion Reactions

    Full text link
    Conditions under which compression occurs and collective expansion develops in energetic reactions of heavy nuclei, are analyzed, together with their effects on emitted light baryons and pions. Within transport simulations, it is shown that shock fronts perpendicular to beam axis form in head-on reactions. The fronts separate hot compressed matter from normal. As impact parameter increases, the angle of inclination of the fronts relative to beam axis decreases, and in-between the fronts a weak tangential discontinuity develops. Hot matter exposed to the vacuum in directions perpendicular to shock motion (and parallel to fronts), starts to expand sideways, early within reactions. Expansion in the direction of shock motion follows after the shocks propagate through nuclei, but due to the delay does not acquire same strength. Expansion affects angular distributions, mean-energy components, shapes of spectra and mean energies of different particles emitted into any one direction, and further particle yields. Both the expansion and a collective motion associated with the weak discontinuity, affect the magnitude of sideward flow within reaction plane. Differences in mean particle energy components in and out of the reaction plane in semicentral collisions, depend sensitively on the relative magnitude of shock speed in normal matter and speed of sound in hot matter.Comment: 71 pages, 33 figures (available on request), report MSUCL-94

    The directed flow maximum near c_s=0

    Get PDF
    We investigate the excitation function of quark-gluon plasma formation and of directed in-plane flow of nucleons in the energy range of the BNL-AGS and for the E(Lab)=40AGeV Pb+Pb collisions performed recently at the CERN-SPS. We employ the three-fluid model with dynamical unification of kinetically equilibrated fluid elements. Within our model with first-order phase transition at high density, droplets of QGP coexisting with hadronic matter are produced already at BNL-AGS energies, E(Lab)=10AGeV. A substantial decrease of the isentropic velocity of sound, however, requires higher energies, E(Lab)=40AGeV. We show the effect on the flow of nucleons in the reaction plane. According to our model calculations, kinematic requirements and EoS effects work hand-in-hand at E(Lab)=40AGeV to allow the observation of the dropping velocity of sound via an increase of the directed flow around midrapidity as compared to top BNL-AGS energy.Comment: 10 pages, 4 figures; plot of p(e) at various specific entropies shows why mixed phase is not soft at AGS energ

    Radial Flow in Au+Au Collisions at E=0.25-1.15 A GeV

    Get PDF
    A systematic study of energy spectra for light particles emitted at midrapidity from Au+Au collisions at E=0.25-1.15 A GeV reveals a significant non-thermal component consistent with a collective radial flow. This component is evaluated as a function of bombarding energy and event centrality. Comparisons to Quantum Molecular Dynamics (QMD) and Boltzmann-Uehling-Uhlenbeck (BUU) models are made for different equations of state.Comment: 10 pages of text and 4 figures (all ps files in a uuencoded package)

    Path to Facilitate the Prediction of Functional Amino Acid Substitutions in Red Blood Cell Disorders – A Computational Approach

    Get PDF
    A major area of effort in current genomics is to distinguish mutations that are functionally neutral from those that contribute to disease. Single Nucleotide Polymorphisms (SNPs) are amino acid substitutions that currently account for approximately half of the known gene lesions responsible for human inherited diseases. As a result, the prediction of non-synonymous SNPs (nsSNPs) that affect protein functions and relate to disease is an important task.In this study, we performed a comprehensive analysis of deleterious SNPs at both functional and structural level in the respective genes associated with red blood cell metabolism disorders using bioinformatics tools. We analyzed the variants in Glucose-6-phosphate dehydrogenase (G6PD) and isoforms of Pyruvate Kinase (PKLR & PKM2) genes responsible for major red blood cell disorders. Deleterious nsSNPs were categorized based on empirical rule and support vector machine based methods to predict the impact on protein functions. Furthermore, we modeled mutant proteins and compared them with the native protein for evaluation of protein structure stability.We argue here that bioinformatics tools can play an important role in addressing the complexity of the underlying genetic basis of Red Blood Cell disorders. Based on our investigation, we report here the potential candidate SNPs, for future studies in human Red Blood Cell disorders. Current study also demonstrates the presence of other deleterious mutations and also endorses with in vivo experimental studies. Our approach will present the application of computational tools in understanding functional variation from the perspective of structure, expression, evolution and phenotype

    Ring electrode for radio-frequency heating of the cornea: modelling and in vitro experiments

    Full text link
    [EN] Radio-frequency thermokeratoplasty (RF-TKP) is a technique used to reshape the cornea curvature by means of thermal lesions using radio-frequency currents. This curvature change allows refractive disorders such as hyperopia to be corrected. A new electrode with ring geometry is proposed for RF-TKP. It was designed to create a single thermal lesion with a full-circle shape. Finite element models were developed, and the temperature distributions in the cornea were analysed for different ring electrode characteristics. The computer results indicated that the maximum temperature in the cornea was located in the vicinity of the ring electrode outer perimeter, and that the lesions had a semi-torus shape. The results also indicated that the electrode thickness, electrode radius and electrode thermal conductivity had a significant influence on the temperature distributions. In addition, in vitro experiments were performed on rabbit eyes. At 5 IN power the lesions were fully circular. Some lesions showed non-uniform characteristics along their circular path. Lesion depth depended on heating duration (60% of corneal thickness for 20s, and 30% for 10s). The results suggest that the critical shrinkage temperature (55-63degreesC) was reached at the central stroma and along the entire circular path in all the cases.Berjano, E.; Saiz Rodríguez, FJ.; Alió, J.; Ferrero, JM. (2003). Ring electrode for radio-frequency heating of the cornea: modelling and in vitro experiments. Medical & Biological Engineering & Computing. 41(6):630-639. https://doi.org/10.1007/BF02349970S630639416Alió, J. L., Ismail, M. M., Artola, A., andPérez-Santonja, J. J. (1997a): ‘Correction of hyperopia induced by photorefractive keratectomy using non-contact Ho: YAG laser thermal keratoplasty’,J. Refract. Surg.,13, pp. 13–16Alió, J. L., Ismail, M. M., andSanchez, J. L. (1997b): ‘Correction of hyperopia with non-contact Ho: YAG laser thermal keratoplasty’,J. Refract. Surg.,13, pp. 17–22Alió, J. L., andPérez-Santonja, J. J. (1999): ‘Correction of hyperopia by laser thermokeratoplasty (LTK)’ inPallikaris, I., andAgarwal, S. (Eds): ‘Refractive Surgery’ (Jaypee Brothers Medical Publishers Ltd, New Delhi, 1999), pp. 583–591Alió, J. L., andPérez-Santonja, J. J. (2002): ‘Correction of hyperopia by laser thermokeratoplasty (LTK)’ inAgarwal, S., Agarwal, A., Apple, D. J., Buratto, L., Alió, J. L., Pandey, S. K., andAgarwal, A. (Eds): ‘Textbook of ophthalmology’ (Lippincott Williams & Wilkins, Philadelphia, 2002), pp. 1331–1337Ayala, M. J., Alió, J. L., Ismail, M. M., andSánchez-Castro, J. M. (2000): ‘Experimental corneal histological study after thermokeratoplasty with holmium laser’,Arch. Soc. Esp. Oftalmol.,75, pp. 619–626Asbell, P. A., Maloney, R. K., Davidorf, J., Hersh, P., McDonald, M., Manche, E., andConductive Keratoplasty Study Group (2001): ‘Conductive keratoplasty for the correction of hyperopia’,Tr. Am. Ophtalmol. Soc.,99, pp. 79–87Avitall, B., Mughal, K., Hare, J., Helms, R., andKrum, D. (1997): ‘The effects of electrode-tissue contact on radiofrequency lesion generation’PACE,20, pp. 2899–2910Avitall, B., Helms, R. W., Koblish, J. B., Sieben, W., Kotov, A. V., andGupta, G. N. (1999): ‘The creation of linear contiguous lesions in the atria with an expandable loop catheter’,J. Am. Coll. Cardiol.,33, pp. 972–984Berjano, E. J., Saiz, J., andFerrero, J. M. (2002): ‘Radio-frequency heating of the cornea: Theoretical model andin vitro experiments’,IEEE Trans. Biomed. Eng.,49, pp. 196–205Brickmann, R., Kampmeier, J., Grotehusmann, U., Vogel, A., Koop, N., Asiyo-Vogel, M., Kamm, K., andBirngruber, R. (1996): ‘Corneal collagen denaturation in laserthermokeratoplasty’,SPIE Proc.,2681, pp. 56–63Choi, B., Kim, J., Welch, A. J., andPearce, J. A. (2002): ‘Dynamic impedance measurements during radio-frequency heating of cornea’,IEEE Trans. Biomed. Eng.,49, pp. 1610–1616Curley, M. G., andHamilton, P. S. (1997): ‘Creation of large thermal lesions in liver using saline-enhanced RF ablation’. Proc. 19th Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., Chicago, pp. 2516–2519Doss, J. D., andAlbillar, J. I. (1980): ‘A technique for the selective heating of corneal stroma’,Contact Intraocular Lens Med.,6, pp. 13–17Doss, J. D. (1982): ‘Calculation of electric fields in conductive media’,Med. Phys.,9(4), pp. 566–573Gruenberg, P., Manning, W., Miller, D. andOlson, W. (1981): ‘Increase in rabbit corneal curvature by heated ring application’,Ann. Ophthalmol.,13, pp. 67–70Hata, C., andRaymond Chia, W.-K. (2001): ‘Catheter for circular tissue ablation and methods thereof’. US Patent 2001/0044625 A1Jain, M. K., andWolf, P. D. (1998): ‘Effect of electrode contact on lesion growth during temperature controlled radiofrequency ablation’, Proc. 20th Ann. Int. Conf. IEEE Eng. Med. Biol. Soc. Hong Kong (IEEE, Piscataway NJ) pp. 245–247Jain, M. K., andWolf, P. D. (1999): ‘Temperature controlled and constant power radiofrequency ablation: what affects lesion growth?’,IEEE Trans. Biomed. Eng.,46, pp. 1405–1412Krasteva, V. Tz., andPapazov, S. P. (2002): ‘Estimation of current density distribution under electrodes for external defibrillation’,Biomed. Eng. OnLine,1, 7Labonté, S. (1992): ‘A theoretical study of radio-frequency ablation of the myocardium’,PhD dissertation, Department of Electrical Engineering, University of Ottawa, CanadaLabonté, S. (1994): ‘Numerical model for radio-frequency ablation of the endocardium and its experimental validation’,IEEE Trans. Biomed. Eng.,41, pp. 108–115Mannis, M. J., Segal, W. A., andDarlington, J. K. (2001): ‘Making sense of refractive surgery in 2001: Why, when, for whom, and by whom?’,Mayo Clin. Proc.,76, pp. 823–829McCally, R. L., Bargeron, R. A., andGreen, W. R. (1983): ‘Stromal damage in rabbit corneas exposed to CO2 laser radiation’,Exp. Eye Res.,37, pp. 543–550McDonald, M. B., Hersh, P. S., Manche, E. E., Maloney, R. K., Davidorf, J., andSabry, M. (2002): ‘Conductive keratoplasty for the correction of low to moderate hyperopia: U.S. clinical trial 1-year results on 355 eyes’,Ophthalmol.,109, pp. 1978–1989McRury, I. D., Mitchell, M. A., Panescu, D. andHaines, D. E. (1997): ‘Non-uniform heating during radiofrequency ablation with long electrodes: monitoring the edge effect’,Circ.,96, pp. 4057–4064Méndez-g, A., andMéndez-Noble, A. (1997): ‘Conductive keratoplasty of the correction of hyperopia’ inSher, N. A. (Ed.) ‘Surgery for hyperopia and presbyopia’ (Williams & Wilkins, Baltimore, 1997), pp. 163–171Miller, D., andManning, W.J. (1978): ‘Alterations in curvature of bovine cornea using heated rings’,Invest. Ophthalmol., p. 297Mirotznik, M. S., andSchwartzman, D. (1996): ‘Nonuniform heating patterns of commercial electrodes for radiofrequency catheter ablation’,J. Cardiovasc. Electrophysiol.,7, pp. 1058–1062Nakagawa, H., Yamanashi, W. S., Pitha, J. V., Arruda, M., Wang, X., Ohtomo, K., Beckman, K. J., McClelland, J. H., Lazzara, R., andJackman, W. M. (1995): ‘Comparison ofin vivo tissue temperature profile and lesion geometry for radiofrequency ablation with a saline-irrigated electrode versus temperature control in a canine thigh muscle preparation’,Circ.,91, pp. 2264–2273Panescu, D., Whayne, J. G., Fleischman, S. D., Mirotznik, M. S., Swanson, D. K., andWebster, J. G. (1995): ‘Three-dimensional finite element analysis of current density and temperature distributions during radio-frequency ablation’,IEEE Trans. Biomed. Eng.,42, pp. 879–890Plonsey, R., andHeppner, D. B. (1967): ‘Considerations of quasistationarity in electrophysiological systems’,Bull. Math. Biophys.,29, pp. 657–664Rowsey, J. J. (1987): ‘Electrosurgical keratoplasty: Update and retraction’,Invest. Ophthalmol. Vis. Sci.,28, p. 224Rutzen, A. R., Roberts, C. W., Driller, J., Gomez, D., Lucas, B. C., Lizzi, F. L., andColeman, D. J. (1990): ‘Production of corneal lesions using high-intensity focused ultrasound’,Cornea,9, pp. 324–330Schwan, H. P., andFoster, K. R. (1980): ‘RF-fields interactions with biological systems: electrical properties and biophysical mechanism’,Proc. IEEE,68, pp. 104–113Seiler, T., Matallana, M., andBende, T. (1990): ‘Laser thermokeratoplasty by means of a pulsed Holmium:YAG Laser for the hyperopic correction’,Refrac. Corneal Surg.,6, pp. 335–339Silvestrini, T. A. (1998): ‘Electrosurgical procedure for the treatment of the cornea’. US Patent 5,766,171Simmons, W. N., Mackey, S., He, D. S. andMarcus, F. L. (1996): ‘Comparison of gold versus platinum electrodes on myocardial lesion size using radiofrequency energy’,PACE,19, pp. 398–402Stringer, H., andParr, J. (1964): ‘Shrinkage temperature of eye collagen’,Nature,204, p. 1307Trembly, B. S., andKeates, R. H. (1991): ‘Combined microwave heating and surface cooling of the cornea’,IEEE Trans. Biomed. Eng.,38, pp. 85–91Trembly, B. S., Hashizume, N., Moodie, K. L., Cohen, K. L., Tripoli, N. K., andHoopes, P. J. (2001): ‘Microwave thermal keratoplasty for myopia: keratoscopic evaluation in porcine eyes’,J. Refract. Surg.,17, pp. 682–688Tungjitkusolmun, S., Woo, E. J., Cao, H., Tsai, J. Z., Vorperian, V. R., andWebster, J. G. (2000): ‘Thermal-electrical finite element modelling for radio frequency cardiac ablation: effects of changes in myocardial properties’,Med. Biol. Eng. Comput.,38, pp. 562–568Wiley, J. D., andWebster, J. G. (1982): ‘Analysis and control of the current distribution under circular dispersive electrodes’,IEEE Trans. Biomed. Eng,29, pp. 381–38
    • …
    corecore