63 research outputs found

    High correlation between the turnover of nucleotides under mutational pressure and the DNA composition

    Get PDF
    BACKGROUND: Any DNA sequence is a result of compromise between the selection and mutation pressures exerted on it during evolution. It is difficult to estimate the relative influence of each of these pressures on the rate of accumulation of substitutions. However, it is important to discriminate between the effect of mutations, and the effect of selection, when studying the phylogenic relations between taxa. RESULTS: We have tested in computer simulations, and analytically, the available substitution matrices for many genomes, and we have found that DNA strands in equilibrium under mutational pressure have unique feature: the fraction of each type of nucleotide is linearly dependent on the time needed for substitution of half of nucleotides of a given type, with a correlation coefficient close to 1. Substitution matrices found for sequences under selection pressure do not have this property. A substitution matrix for the leading strand of the Borrelia burgdorferi genome, having reached equilibrium in computer simulation, gives a DNA sequence with nucleotide composition and asymmetry corresponding precisely to the third positions in codons of protein coding genes located on the leading strand. CONCLUSIONS: Parameters of mutational pressure allow us to count DNA composition in equilibrium with this mutational pressure. Comparing any real DNA sequence with the sequence in equilibrium it is possible to estimate the distance between these sequences, which could be used as a measure of the selection pressure. Furthermore, the parameters of the mutational pressure enable direct estimation of the relative mutation rates in any DNA sequence in the studied genome

    The relationships between the isoelectric point and: length of proteins, taxonomy and ecology of organisms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The distribution of isoelectric point (pI) of proteins in a proteome is universal for all organisms. It is bimodal dividing the proteome into two sets of acidic and basic proteins. Different species however have different abundance of acidic and basic proteins that may be correlated with taxonomy, subcellular localization, ecological niche of organisms and proteome size.</p> <p>Results</p> <p>We have analysed 1784 proteomes encoded by chromosomes of Archaea, Bacteria, Eukaryota, and also mitochondria, plastids, prokaryotic plasmids, phages and viruses. We have found significant correlation in more than 95% of proteomes between the protein length and pI in proteomes – positive for acidic proteins and negative for the basic ones. Plastids, viruses and plasmids encode more basic proteomes while chromosomes of Archaea, Bacteria, Eukaryota, mitochondria and phages more acidic ones. Mitochondrial proteomes of Viridiplantae, Protista and Fungi are more basic than Metazoa. It results from the presence of basic proteins in the former proteomes and their absence from the latter ones and is related with reduction of metazoan genomes. Significant correlation was found between the pI bias of proteomes encoded by prokaryotic chromosomes and proteomes encoded by plasmids but there is no correlation between eukaryotic nuclear-coded proteomes and proteomes encoded by organelles. Detailed analyses of prokaryotic proteomes showed significant relationships between pI distribution and habitat, relation to the host cell and salinity of the environment, but no significant correlation with oxygen and temperature requirements. The salinity is positively correlated with acidicity of proteomes. Host-associated organisms and especially intracellular species have more basic proteomes than free-living ones. The higher rate of mutations accumulation in the intracellular parasites and endosymbionts is responsible for the basicity of their tiny proteomes that explains the observed positive correlation between the decrease of genome size and the increase of basicity of proteomes. The results indicate that even conserved proteins subjected to strong selectional constraints follow the global trend in the pI distribution.</p> <p>Conclusion</p> <p>The distribution of pI of proteins in proteomes shows clear relationships with length of proteins, subcellular localization, taxonomy and ecology of organisms. The distribution is also strongly affected by mutational pressure especially in intracellular organisms.</p

    Phase Transition in Sexual Reproduction and Biological Evolution

    Full text link
    Using Monte Carlo model of biological evolution we have discovered that populations can switch between two different strategies of their genomes' evolution; Darwinian purifying selection and complementing the haplotypes. The first one is exploited in the large panmictic populations while the second one in the small highly inbred populations. The choice depends on the crossover frequency. There is a power law relation between the critical value of crossover frequency and the size of panmictic population. Under the constant inbreeding this critical value of crossover does not depend on the population size and has a character of phase transition. Close to this value sympatric speciation is observed.Comment: 13 pages, 8 figure

    Peculiarity of hybrid entrepreneurs – revisiting Lazear’s theory of entrepreneurship

    Get PDF
    The aim of this study is to explore and elaborate the concept of hybrid entrepreneurship, i.e., a simultaneous mix of self-employment (entrepreneurship) and salary employment. Lazear’s theory of entrepreneurship is assessed in terms whether it can explain the phenomenon of being a hybrid entrepreneur. The hypothesis is that the probability of linking a salary job with one’s own business increases with the variety and level of education gained, the broadness of professional and management experience but also the level of entrepreneurial self-efficacy. The hypotheses are tested with multivariate logistic regression, using survey data gathered from 1600 entrepreneurs. In light of the results, Lazear’s theory cannot be unambiguously extended to the case of hybrid entrepreneurs. Although the probability of being a hybrid entrepreneur increases with broader professional and managerial experience, at the same time it diminishes as the level and diversity of education increase. The results suggest that hybrid entrepreneurs are an importantly discrete population and therefore need to be treated separately. The theoretical and practical implications of the results are discussed

    The Influence of the Selection at the Amino Acid Level on Synonymous Codon Usage from the Viewpoint of Alternative Genetic Codes

    No full text
    Synonymous codon usage can be influenced by mutations and/or selection, e.g., for speed of protein translation and correct folding. However, this codon bias can also be affected by a general selection at the amino acid level due to differences in the acceptance of the loss and generation of these codons. To assess the importance of this effect, we constructed a mutation–selection model model, in which we generated almost 90,000 stationary nucleotide distributions produced by mutational processes and applied a selection based on differences in physicochemical properties of amino acids. Under these conditions, we calculated the usage of fourfold degenerated (4FD) codons and compared it with the usage characteristic of the pure mutations. We considered both the standard genetic code (SGC) and alternative genetic codes (AGCs). The analyses showed that a majority of AGCs produced a greater 4FD codon bias than the SGC. The mutations producing more thymine or adenine than guanine and cytosine increased the differences in usage. On the other hand, the mutational pressures generating a lot of cytosine or guanine with a low content of adenine and thymine decreased this bias because the nucleotide content of most 4FD codons stayed in the compositional equilibrium with these pressures. The comparison of the theoretical results with those for real protein coding sequences showed that the influence of selection at the amino acid level on the synonymous codon usage cannot be neglected. The analyses indicate that the effect of amino acid selection cannot be disregarded and that it can interfere with other selection factors influencing codon usage, especially in AT-rich genomes, in which AGCs are usually used
    corecore