7,663 research outputs found

    Joseon mummies before mummy studies began in Korea

    Get PDF
    Mummy studies in Korea are instrumental in reconstructing the health and disease status of pre-modern Joseon peoples using firm scientific evidence. However, this scientific approach to such investigations in Korea is a relatively new discipline which began only within the last decade. Previous studies on Joseon tombs and their contents were performed exclusively by dress historians because most of the artefacts recoverable from Joseon tombs were textiles. In this report, we examine some of the excavation records left by dress historians in order to elucidate the approximate number and preservation status of Korean mummies discovered prior to the advent of their scientific investigation

    Improper hydration induces global gene expression changes associated with renal development in infant mice

    Get PDF
    Abstract Background The kidney is a major organ in which fluid balance and waste excretion is regulated. For the kidney to achieve maturity with functions, normal renal developmental processes need to occur. Comprehensive genetic programs underlying renal development during the prenatal period have been widely studied. However, postnatal renal development, from infancy to the juvenile period, has not been studied yet. Here, we investigated whether structural and functional kidney development was still ongoing in early life by analyzing the renal transcriptional networks of infant (4 weeks old) and juvenile (7 weeks old) mice. We further examined the effects of dehydration on kidney development to unravel the mechanistic bases underlying deteriorative impact of pediatric dehydration on renal development. Methods 3-week-old infant mice that just finished weaning period were provided limited access to a water for fifteen minutes per day for one week (RES 1W) and four weeks (RES 4W) to induce dehydration while control group consumed water ad libitum with free access to the water bottle. Transcriptome analysis was conducted to understand physiological changes during postnatal renal development and dehydration. Results Kidneys in 4-week- and 7-week-old mice showed significantly distinctive functional gene networks. Gene sets related to cell cycle regulators, fetal kidney patterning molecules, and immature basement membrane integrity were upregulated in infantile kidneys while heightened expressions of genes associated with ion transport and drug metabolism were observed in juvenile kidneys. Dehydration during infancy suppressed renal growth by interrupting the SHH signaling pathway, which targets cell cycle regulators. Importantly, it is likely that disruption of the developmental program ultimately led to a decline in gene expression associated with basement membrane integrity. Conclusions Altogether, we demonstrate transcriptional events during renal development in infancy and show that the impacts of inadequate water intake in the early postnatal state heavily rely on the impairment of normal renal development. Here, we provide a meaningful perspective of renal development in infancy with a molecular and physiological explanation of why infants are more vulnerable to dehydration than adults. These results provide new insights into the molecular effects of dehydration on renal physiology and indicate that optimal nutritional interventions are necessary for pediatric renal development

    Induced Ferromagnetism at BiFeO3/YBa2Cu3O7 Interfaces

    Full text link
    Transition metal oxides (TMOs) exhibit many emergent phenomena ranging from high-temperature superconductivity and giant magnetoresistance to magnetism and ferroelectricity. In addition, when TMOs are interfaced with each other, new functionalities can arise, which are absent in individual components. Here, we report results from first-principles calculations on the magnetism at the BiFeO3/YBa2Cu3O7 interfaces. By comparing the total energy for various magnetic spin configurations inside BiFeO3, we are able to show that a metallic ferromagnetism is induced near the interface. We further develop an interface exchange-coupling model and place the extracted exchange coupling interaction strengths, from the first-principles calculations, into a resultant generic phase diagram. Our conclusion of interfacial ferromagnetism is confirmed by the presence of a hysteresis loop in field-dependent magnetization data. The emergence of interfacial ferromagnetism should have implications to electronic and transport properties.Comment: 13 pages, 4 figure

    MULTI-TRAIT QTL MAPPING USING A STRUCTURAL EQUATION MODEL

    Get PDF
    Research on mapping quantitative trait loci (QTL) often results in data on a number of traits that have well established causal relationships. Many multi-trait QTL mapping methods, taking into account the correlation among the multiple traits, have been developed to improve the statistical power of the test for QTL and the precision of parameter estimation. However none of these methods are capable of incorporating the causal structure among the traits with the consequence that genetic functions of the QTL may not be fully understood. Structural equation modeling (SEM) allows researchers to explicitly characterize the causal structure among the variables and to decompose the effects into direct, indirect, and total effects. In this paper, we developed a multi-trait SEM method of QTL mapping that takes into account the causal relationships among traits. The performance of the proposed method is evaluated by simulation study. Compared with single trait analysis and the multi-trait least-squares analysis, our proposed model (Multitrait SEM) provides important insight into how QTLs regulate traits by investigating the direct, indirect, and total QTL effects, which is generally not possible with other methods. The approach also helps with building models that more realistically reflect complex relationships among QTL and traits, and is more precise and efficient in QTL mapping than single trait analysis

    A statistical method to estimate low-energy hadronic cross sections

    Full text link
    In this article we propose a model based on the Statistical Bootstrap approach to estimate the cross sections of different hadronic reactions up to a few GeV in c.m.s energy. The method is based on the idea, when two particles collide a so called fireball is formed, which after a short time period decays statistically into a specific final state. To calculate the probabilities we use a phase space description extended with quark combinatorial factors and the possibility of more than one fireball formation. In a few simple cases the probability of a specific final state can be calculated analytically, where we show that the model is able to reproduce the ratios of the considered cross sections. We also show that the model is able to describe proton\,-\,antiproton annihilation at rest. In the latter case we used a numerical method to calculate the more complicated final state probabilities. Additionally, we examined the formation of strange and charmed mesons as well, where we used existing data to fit the relevant model parameters.Comment: 12 pages, 12 figures, submitted to EPJ

    Investigation of thermal resistance and power consumption in Ga-doped indium oxide (In2O3) nanowire phase change random access memory

    Get PDF
    The resistance stability and thermal resistance of phase change memory devices using similar to 40 nm diameter Ga-doped In2O3 nanowires (Ga:In2O3 NW) with different Ga-doping concentrations have been investigated. The estimated resistance stability (R(t)/R-0 ratio) improves with higher Ga concentration and is dependent on annealing temperature. The extracted thermal resistance (R-th) increases with higher Ga-concentration and thus the power consumption can be reduced by similar to 90% for the 11.5% Ga: In2O3 NW, compared to the 2.1% Ga: In2O3 NW. The excellent characteristics of Ga-doped In2O3 nanowire devices offer an avenue to develop low power and reliable phase change random access memory applications. (C) 2014 AIP Publishing LLC.X113sciescopu
    corecore