29,444 research outputs found

    The seventh visual object tracking VOT2019 challenge results

    Get PDF
    180The Visual Object Tracking challenge VOT2019 is the seventh annual tracker benchmarking activity organized by the VOT initiative. Results of 81 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis as well as the standard VOT methodology for long-term tracking analysis. The VOT2019 challenge was composed of five challenges focusing on different tracking domains: (i) VOTST2019 challenge focused on short-term tracking in RGB, (ii) VOT-RT2019 challenge focused on 'real-time' shortterm tracking in RGB, (iii) VOT-LT2019 focused on longterm tracking namely coping with target disappearance and reappearance. Two new challenges have been introduced: (iv) VOT-RGBT2019 challenge focused on short-term tracking in RGB and thermal imagery and (v) VOT-RGBD2019 challenge focused on long-term tracking in RGB and depth imagery. The VOT-ST2019, VOT-RT2019 and VOT-LT2019 datasets were refreshed while new datasets were introduced for VOT-RGBT2019 and VOT-RGBD2019. The VOT toolkit has been updated to support both standard shortterm, long-term tracking and tracking with multi-channel imagery. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website.openopenKristan M.; Matas J.; Leonardis A.; Felsberg M.; Pflugfelder R.; Kamarainen J.-K.; Zajc L.C.; Drbohlav O.; Lukezic A.; Berg A.; Eldesokey A.; Kapyla J.; Fernandez G.; Gonzalez-Garcia A.; Memarmoghadam A.; Lu A.; He A.; Varfolomieiev A.; Chan A.; Tripathi A.S.; Smeulders A.; Pedasingu B.S.; Chen B.X.; Zhang B.; Baoyuanwu B.; Li B.; He B.; Yan B.; Bai B.; Li B.; Li B.; Kim B.H.; Ma C.; Fang C.; Qian C.; Chen C.; Li C.; Zhang C.; Tsai C.-Y.; Luo C.; Micheloni C.; Zhang C.; Tao D.; Gupta D.; Song D.; Wang D.; Gavves E.; Yi E.; Khan F.S.; Zhang F.; Wang F.; Zhao F.; De Ath G.; Bhat G.; Chen G.; Wang G.; Li G.; Cevikalp H.; Du H.; Zhao H.; Saribas H.; Jung H.M.; Bai H.; Yu H.; Peng H.; Lu H.; Li H.; Li J.; Li J.; Fu J.; Chen J.; Gao J.; Zhao J.; Tang J.; Li J.; Wu J.; Liu J.; Wang J.; Qi J.; Zhang J.; Tsotsos J.K.; Lee J.H.; Van De Weijer J.; Kittler J.; Ha Lee J.; Zhuang J.; Zhang K.; Wang K.; Dai K.; Chen L.; Liu L.; Guo L.; Zhang L.; Wang L.; Wang L.; Zhang L.; Wang L.; Zhou L.; Zheng L.; Rout L.; Van Gool L.; Bertinetto L.; Danelljan M.; Dunnhofer M.; Ni M.; Kim M.Y.; Tang M.; Yang M.-H.; Paluru N.; Martinel N.; Xu P.; Zhang P.; Zheng P.; Zhang P.; Torr P.H.S.; Wang Q.Z.Q.; Guo Q.; Timofte R.; Gorthi R.K.; Everson R.; Han R.; Zhang R.; You S.; Zhao S.-C.; Zhao S.; Li S.; Li S.; Ge S.; Bai S.; Guan S.; Xing T.; Xu T.; Yang T.; Zhang T.; Vojir T.; Feng W.; Hu W.; Wang W.; Tang W.; Zeng W.; Liu W.; Chen X.; Qiu X.; Bai X.; Wu X.-J.; Yang X.; Chen X.; Li X.; Sun X.; Chen X.; Tian X.; Tang X.; Zhu X.-F.; Huang Y.; Chen Y.; Lian Y.; Gu Y.; Liu Y.; Chen Y.; Zhang Y.; Xu Y.; Wang Y.; Li Y.; Zhou Y.; Dong Y.; Xu Y.; Zhang Y.; Li Y.; Luo Z.W.Z.; Zhang Z.; Feng Z.-H.; He Z.; Song Z.; Chen Z.; Zhang Z.; Wu Z.; Xiong Z.; Huang Z.; Teng Z.; Ni Z.Kristan, M.; Matas, J.; Leonardis, A.; Felsberg, M.; Pflugfelder, R.; Kamarainen, J. -K.; Zajc, L. C.; Drbohlav, O.; Lukezic, A.; Berg, A.; Eldesokey, A.; Kapyla, J.; Fernandez, G.; Gonzalez-Garcia, A.; Memarmoghadam, A.; Lu, A.; He, A.; Varfolomieiev, A.; Chan, A.; Tripathi, A. S.; Smeulders, A.; Pedasingu, B. S.; Chen, B. X.; Zhang, B.; Baoyuanwu, B.; Li, B.; He, B.; Yan, B.; Bai, B.; Li, B.; Li, B.; Kim, B. H.; Ma, C.; Fang, C.; Qian, C.; Chen, C.; Li, C.; Zhang, C.; Tsai, C. -Y.; Luo, C.; Micheloni, C.; Zhang, C.; Tao, D.; Gupta, D.; Song, D.; Wang, D.; Gavves, E.; Yi, E.; Khan, F. S.; Zhang, F.; Wang, F.; Zhao, F.; De Ath, G.; Bhat, G.; Chen, G.; Wang, G.; Li, G.; Cevikalp, H.; Du, H.; Zhao, H.; Saribas, H.; Jung, H. M.; Bai, H.; Yu, H.; Peng, H.; Lu, H.; Li, H.; Li, J.; Li, J.; Fu, J.; Chen, J.; Gao, J.; Zhao, J.; Tang, J.; Li, J.; Wu, J.; Liu, J.; Wang, J.; Qi, J.; Zhang, J.; Tsotsos, J. K.; Lee, J. H.; Van De Weijer, J.; Kittler, J.; Ha Lee, J.; Zhuang, J.; Zhang, K.; Wang, K.; Dai, K.; Chen, L.; Liu, L.; Guo, L.; Zhang, L.; Wang, L.; Wang, L.; Zhang, L.; Wang, L.; Zhou, L.; Zheng, L.; Rout, L.; Van Gool, L.; Bertinetto, L.; Danelljan, M.; Dunnhofer, M.; Ni, M.; Kim, M. Y.; Tang, M.; Yang, M. -H.; Paluru, N.; Martinel, N.; Xu, P.; Zhang, P.; Zheng, P.; Zhang, P.; Torr, P. H. S.; Wang, Q. Z. Q.; Guo, Q.; Timofte, R.; Gorthi, R. K.; Everson, R.; Han, R.; Zhang, R.; You, S.; Zhao, S. -C.; Zhao, S.; Li, S.; Li, S.; Ge, S.; Bai, S.; Guan, S.; Xing, T.; Xu, T.; Yang, T.; Zhang, T.; Vojir, T.; Feng, W.; Hu, W.; Wang, W.; Tang, W.; Zeng, W.; Liu, W.; Chen, X.; Qiu, X.; Bai, X.; Wu, X. -J.; Yang, X.; Chen, X.; Li, X.; Sun, X.; Chen, X.; Tian, X.; Tang, X.; Zhu, X. -F.; Huang, Y.; Chen, Y.; Lian, Y.; Gu, Y.; Liu, Y.; Chen, Y.; Zhang, Y.; Xu, Y.; Wang, Y.; Li, Y.; Zhou, Y.; Dong, Y.; Xu, Y.; Zhang, Y.; Li, Y.; Luo, Z. W. Z.; Zhang, Z.; Feng, Z. -H.; He, Z.; Song, Z.; Chen, Z.; Zhang, Z.; Wu, Z.; Xiong, Z.; Huang, Z.; Teng, Z.; Ni, Z

    Genome-Wide Identification of NAC Transcription Factor Family in Juglans mandshurica and Their Expression Analysis during the Fruit Development and Ripening

    Get PDF
    The NAC (NAM, ATAF and CUC) gene family plays a crucial role in the transcriptional regulation of various biological processes and has been identified and characterized in multiple plant species. However, genome-wide identification of this gene family has not been implemented in Juglans mandshurica, and specific functions of these genes in the development of fruits remain unknown. In this study, we performed genome-wide identification and functional analysis of the NAC gene family during fruit development and identified a total of 114 JmNAC genes in the J. mandshurica genome. Chromosomal location analysis revealed that JmNAC genes were unevenly distributed in 16 chromosomes; the highest numbers were found in chromosomes 2 and 4. Furthermore, according to the homologues of JmNAC genes in Arabidopsis thaliana, a phylogenetic tree was constructed, and the results demonstrated 114 JmNAC genes, which were divided into eight subgroups. Four JmNAC gene pairs were identified as the result of tandem duplicates. Tissue-specific analysis of JmNAC genes during different developmental stages revealed that 39 and 25 JmNAC genes exhibited upregulation during the mature stage in walnut exocarp and embryos, indicating that they may serve key functions in fruit development. Furthermore, 12 upregulated JmNAC genes were common in fruit ripening stage in walnut exocarp and embryos, which demonstrated that these genes were positively correlated with fruit development in J. mandshurica. This study provides new insights into the regulatory functions of JmNAC genes during fruit development in J. mandshurica, thereby improving the understanding of characteristics and evolution of the JmNAC gene family

    Insights into the effect of human civilization on Malus evolution and domestication

    Get PDF
    22openInternationalInternational coauthor/editorThe evolutionary history of the Malus genus has not been well studied. In the current study, we presented genetic evidence on the origin of the Malus genus based on genome sequencing of 297 Malus accessions, revealing the genetic relationship between wild species and cultivated apples. Our results demonstrated that North American and East Asian wild species are closer to the outgroup (pear) than Central Asian species, and hybrid species including natural (separated before the Pleistocene, about 2.5 Mya) and artificial hybrids (including ornamental trees and rootstocks) are between East and Central Asian wild species. Introgressions from M. sylvestris in cultivated apples appeared to be more extensive than those from M. sieversii, whose genetic background flowed westward across Eurasia and eastward to wild species including M. prunifolia, M. × asiatica, M. × micromalus, and M. × robust. Our results suggested that the loss of ancestral gene flow from M. sieversii in cultivated apples accompanied the movement of European traders around the world since the Age of Discovery. Natural SNP variations showed that cultivated apples had higher nucleotide diversity than wild species and more unique SNPs than other apple groups. An apple ERECTA-like gene that underwent selection during domestication on 15th chromosome was identified as a likely major determinant of fruit length and diameter, and an NB-ARC domain-containing gene was found to strongly affect anthocyanin accumulation using a genome-wide association approach. Our results provide new insights into the origin and domestication of apples and will be useful in new breeding programmes and efforts to increase fruit crop productivity.openChen, Pengxiang; Li, Zhongxing; Zhang, Dehui; Shen, Wenyun; Xie, Yinpeng; Zhang, Jing; Jiang, Lijuan; Li, Xuewei; Shen, Xiaoxia; Geng, Dali; Wang, Liping; Niu, Chundong; Bao, Chana; Yan, Mingjia; Li, Haiyan; Li, Cuiying; Yan, Yan; Zou, Yangjun; Micheletti, Diego; Koot, Emily; Ma, Fengwang; Guan, QingmeiChen, P.; Li, Z.; Zhang, D.; Shen, W.; Xie, Y.; Zhang, J.; Jiang, L.; Li, X.; Shen, X.; Geng, D.; Wang, L.; Niu, C.; Bao, C.; Yan, M.; Li, H.; Li, C.; Yan, Y.; Zou, Y.; Micheletti, D.; Koot, E.; Ma, F.; Guan, Q

    Recent progress in designing stable composite lithium anodes with improved wettability

    Get PDF
    Lithium (Li) is a promising battery anode because of its high theoretical capacity and low reduction potential, but safety hazards that arise from its continuous dendrite growth and huge volume changes limit its practical applications. Li can be hosted in a framework material to address these key issues, but methods to encage Li inside scaffolds remain challenging. The melt infusion of molten Li into substrates has attracted enormous attention in both academia and industry because it provides an industrially adoptable technology capable of fabricating composite Li anodes. In this review, the wetting mechanism driving the spread of liquefied Li toward a substrate is discussed. Following this, various strategies are proposed to engineer stable Li metal composite anodes that are suitable for liquid and solid-state electrolytes. A general conclusion and a perspective on the current limitations and possible future research directions for constructing composite Li anodes for high-energy lithium metal batteries are presented.Zi-Jian Zheng, Huan Ye, Zai-Ping Gu

    Applications of Zeolites to C1 Chemistry: Recent Advances, Challenges, and Opportunities

    Full text link
    [EN] C1 chemistry, which is the catalytic transformation of C1 molecules including CO, CO2, CH4, CH3OH, and HCOOH, plays an important role in providing energy and chemical supplies while meeting environmental requirements. Zeolites are highly efficient solid catalysts used in the chemical industry. The design and development of zeolite-based mono-, bi-, and multifunctional catalysts has led to a booming application of zeolite-based catalysts to C1 chemistry. Combining the advantages of zeolites and metallic catalytic species has promoted the catalytic production of various hydrocarbons (e.g., methane, light olefins, aromatics, and liquid fuels) and oxygenates (e.g., methanol, dimethyl ether, formic acid, and higher alcohols) from C1 molecules. The key zeolite descriptors that influence catalytic performance, such as framework topologies, nanoconfinement effects, Bronsted acidities, secondary-pore systems, particle sizes, extraframework cations and atoms, hydrophobicity and hydrophilicity, and proximity between acid and metallic sites are discussed to provide a deep understanding of the significance of zeolites to C1 chemistry. An outlook regarding challenges and opportunities for the conversion of C1 resources using zeolite-based catalysts to meet emerging energy and environmental demands is also presented.The authors thank the National Natural Science Foundation of China (Grants 21920102005, 21835002, and 21621001), the National Key Research and Development Program of China (Grant 2016YFB0701100), the 111 Project of China (B17020), and the Spanish Government through "Severo Ochoa" (SEV-2016-0683, MINECO) and PGC2018-101247-B-I00 for supporting this work.Zhang, Q.; Yu, J.; Corma Canós, A. (2020). Applications of Zeolites to C1 Chemistry: Recent Advances, Challenges, and Opportunities. Advanced Materials. 32(44):1-31. https://doi.org/10.1002/adma.202002927S1313244Zhou, W., Cheng, K., Kang, J., Zhou, C., Subramanian, V., Zhang, Q., & Wang, Y. (2019). New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chemical Society Reviews, 48(12), 3193-3228. doi:10.1039/c8cs00502hMartínez-Vargas, D. X., Sandoval-Rangel, L., Campuzano-Calderon, O., Romero-Flores, M., Lozano, F. J., Nigam, K. D. P., … Montesinos-Castellanos, A. (2019). Recent Advances in Bifunctional Catalysts for the Fischer–Tropsch Process: One-Stage Production of Liquid Hydrocarbons from Syngas. Industrial & Engineering Chemistry Research, 58(35), 15872-15901. doi:10.1021/acs.iecr.9b01141Du, C., Lu, P., & Tsubaki, N. (2019). Efficient and New Production Methods of Chemicals and Liquid Fuels by Carbon Monoxide Hydrogenation. ACS Omega, 5(1), 49-56. doi:10.1021/acsomega.9b03577Tomkins, P., Ranocchiari, M., & van Bokhoven, J. A. (2017). Direct Conversion of Methane to Methanol under Mild Conditions over Cu-Zeolites and beyond. Accounts of Chemical Research, 50(2), 418-425. doi:10.1021/acs.accounts.6b00534Dai, W., Wang, X., Wu, G., Guan, N., Hunger, M., & Li, L. (2011). Methanol-to-Olefin Conversion on Silicoaluminophosphate Catalysts: Effect of Brønsted Acid Sites and Framework Structures. ACS Catalysis, 1(4), 292-299. doi:10.1021/cs200016uGaladima, A., & Muraza, O. (2015). Recent Developments on Silicoaluminates and Silicoaluminophosphates in the Methanol-to-Propylene Reaction: A Mini Review. Industrial & Engineering Chemistry Research, 54(18), 4891-4905. doi:10.1021/acs.iecr.5b00338Preuster, P., & Albert, J. (2018). Biogenic Formic Acid as a Green Hydrogen Carrier. Energy Technology, 6(3), 501-509. doi:10.1002/ente.201700572Onishi, N., Iguchi, M., Yang, X., Kanega, R., Kawanami, H., Xu, Q., & Himeda, Y. (2018). Development of Effective Catalysts for Hydrogen Storage Technology Using Formic Acid. Advanced Energy Materials, 9(23), 1801275. doi:10.1002/aenm.201801275Yarulina, I., Chowdhury, A. D., Meirer, F., Weckhuysen, B. M., & Gascon, J. (2018). Recent trends and fundamental insights in the methanol-to-hydrocarbons process. Nature Catalysis, 1(6), 398-411. doi:10.1038/s41929-018-0078-5Valentini, F., Kozell, V., Petrucci, C., Marrocchi, A., Gu, Y., Gelman, D., & Vaccaro, L. (2019). Formic acid, a biomass-derived source of energy and hydrogen for biomass upgrading. Energy & Environmental Science, 12(9), 2646-2664. doi:10.1039/c9ee01747jSun, L., Wang, Y., Guan, N., & Li, L. (2019). Methane Activation and Utilization: Current Status and Future Challenges. Energy Technology, 8(8), 1900826. doi:10.1002/ente.201900826Liu, J., He, Y., Yan, L., Ma, C., Zhang, C., Xiang, H., … Li, Y. (2020). Nano-ZrO2 as hydrogenation phase in bi-functional catalyst for syngas aromatization. Fuel, 263, 116803. doi:10.1016/j.fuel.2019.116803Li, W., He, Y., Li, H., Shen, D., Xing, C., & Yang, R. (2017). Spatial confinement effects of zeolite-based micro-capsule catalyst on tuned Fischer-Tropsch synthesis product distribution. Catalysis Communications, 98, 98-101. doi:10.1016/j.catcom.2017.05.008Lin, Q., Zhang, Q., Yang, G., Chen, Q., Li, J., Wei, Q., … Tsubaki, N. (2016). Insights into the promotional roles of palladium in structure and performance of cobalt-based zeolite capsule catalyst for direct synthesis of C5–C11 iso-paraffins from syngas. Journal of Catalysis, 344, 378-388. doi:10.1016/j.jcat.2016.10.012Kang, J., Wang, X., Peng, X., Yang, Y., Cheng, K., Zhang, Q., & Wang, Y. (2016). Mesoporous Zeolite Y-Supported Co Nanoparticles as Efficient Fischer–Tropsch Catalysts for Selective Synthesis of Diesel Fuel. Industrial & Engineering Chemistry Research, 55(51), 13008-13019. doi:10.1021/acs.iecr.6b03810Cai, M., Palčić, A., Subramanian, V., Moldovan, S., Ersen, O., Valtchev, V., … Khodakov, A. Y. (2016). Direct dimethyl ether synthesis from syngas on copper–zeolite hybrid catalysts with a wide range of zeolite particle sizes. Journal of Catalysis, 338, 227-238. doi:10.1016/j.jcat.2016.02.025Schwach, P., Pan, X., & Bao, X. (2017). Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects. Chemical Reviews, 117(13), 8497-8520. doi:10.1021/acs.chemrev.6b00715Li, Z., & Xu, Q. (2017). Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid. Accounts of Chemical Research, 50(6), 1449-1458. doi:10.1021/acs.accounts.7b00132Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014Li, Y., Li, L., & Yu, J. (2017). Applications of Zeolites in Sustainable Chemistry. Chem, 3(6), 928-949. doi:10.1016/j.chempr.2017.10.009Database of Zeolite Structures http://www.iza‐structure.org/databases/(accessed: May 2020).Kasipandi, S., & Bae, J. W. (2019). Recent Advances in Direct Synthesis of Value‐Added Aromatic Chemicals from Syngas by Cascade Reactions over Bifunctional Catalysts. Advanced Materials, 31(34), 1803390. doi:10.1002/adma.201803390Masudi, A., Jusoh, N. W. C., & Muraza, O. (2020). Opportunities for less-explored zeolitic materials in the syngas-to-olefins pathway over nanoarchitectured catalysts: a mini review. Catalysis Science & Technology, 10(6), 1582-1596. doi:10.1039/c9cy01875aSaravanan, K., Ham, H., Tsubaki, N., & Bae, J. W. (2017). Recent progress for direct synthesis of dimethyl ether from syngas on the heterogeneous bifunctional hybrid catalysts. Applied Catalysis B: Environmental, 217, 494-522. doi:10.1016/j.apcatb.2017.05.085Sun, Y., Han, X., & Zhao, Z. (2019). Direct coating copper–zinc–aluminum oxalate with H-ZSM-5 to fabricate a highly efficient capsule-structured bifunctional catalyst for dimethyl ether production from syngas. Catalysis Science & Technology, 9(14), 3763-3770. doi:10.1039/c9cy00980aLiu, C., Liu, S., Zhou, H., Su, J., Jiao, W., Zhang, L., … Xie, Z. (2019). Selective conversion of syngas to aromatics over metal oxide/HZSM-5 catalyst by matching the activity between CO hydrogenation and aromatization. Applied Catalysis A: General, 585, 117206. doi:10.1016/j.apcata.2019.117206Friedel, R. A., & Anderson, R. B. (1950). Composition of Synthetic Liquid Fuels. I. Product Distribution and Analysis of C5—C8 Paraffin Isomers from Cobalt Catalyst1. Journal of the American Chemical Society, 72(3), 1212-1215. doi:10.1021/ja01159a039Puskas, I., & Hurlbut, R. . (2003). Comments about the causes of deviations from the Anderson–Schulz–Flory distribution of the Fischer–Tropsch reaction products. Catalysis Today, 84(1-2), 99-109. doi:10.1016/s0920-5861(03)00305-5Leckel, D. (2009). Diesel Production from Fischer−Tropsch: The Past, the Present, and New Concepts. Energy & Fuels, 23(5), 2342-2358. doi:10.1021/ef900064cTorres Galvis, H. M., & de Jong, K. P. (2013). Catalysts for Production of Lower Olefins from Synthesis Gas: A Review. ACS Catalysis, 3(9), 2130-2149. doi:10.1021/cs4003436Zhu, Y., Pan, X., Jiao, F., Li, J., Yang, J., Ding, M., … Bao, X. (2017). Role of Manganese Oxide in Syngas Conversion to Light Olefins. ACS Catalysis, 7(4), 2800-2804. doi:10.1021/acscatal.7b00221Xu, Y., Liu, D., & Liu, X. (2018). Conversion of syngas toward aromatics over hybrid Fe-based Fischer-Tropsch catalysts and HZSM-5 zeolites. Applied Catalysis A: General, 552, 168-183. doi:10.1016/j.apcata.2018.01.012Yang, G., He, J., Zhang, Y., Yoneyama, Y., Tan, Y., Han, Y., … Tsubaki, N. (2008). Design and Modification of Zeolite Capsule Catalyst, A Confined Reaction Field, and its Application in One-Step Isoparaffin Synthesis from Syngas. Energy & Fuels, 22(3), 1463-1468. doi:10.1021/ef700682yDuyckaerts, N., Trotuş, I.-T., Swertz, A.-C., Schüth, F., & Prieto, G. (2016). In Situ Hydrocracking of Fischer–Tropsch Hydrocarbons: CO-Prompted Diverging Reaction Pathways for Paraffin and α-Olefin Primary Products. ACS Catalysis, 6(7), 4229-4238. doi:10.1021/acscatal.6b00904Jiao, F., Li, J., Pan, X., Xiao, J., Li, H., Ma, H., … Bao, X. (2016). Selective conversion of syngas to light olefins. Science, 351(6277), 1065-1068. doi:10.1126/science.aaf1835Mazonde, B., Cheng, S., Zhang, G., Javed, M., Gao, W., Zhang, Y., … Xing, C. (2018). A solvent-free in situ synthesis of a hierarchical Co-based zeolite catalyst and its application to tuning Fischer–Tropsch product selectivity. Catalysis Science & Technology, 8(11), 2802-2808. doi:10.1039/c8cy00243fVarma, R. L., Bakhshi, N. N., & Mathews, J. F. (1990). Selective synthesis of hydrocarbons from syngas using nickel/ZSM-5 catalysts. Industrial & Engineering Chemistry Research, 29(9), 1753-1757. doi:10.1021/ie00105a002Wang, N., Sun, Q., & Yu, J. (2018). Ultrasmall Metal Nanoparticles Confined within Crystalline Nanoporous Materials: A Fascinating Class of Nanocatalysts. Advanced Materials, 31(1), 1803966. doi:10.1002/adma.201803966Nieskens, D. L. S., Lunn, J. D., & Malek, A. (2018). Understanding the Enhanced Lifetime of SAPO-34 in a Direct Syngas-to-Hydrocarbons Process. ACS Catalysis, 9(1), 691-700. doi:10.1021/acscatal.8b03465Ni, Y., Liu, Y., Chen, Z., Yang, M., Liu, H., He, Y., … Liu, Z. (2018). Realizing and Recognizing Syngas-to-Olefins Reaction via a Dual-Bed Catalyst. ACS Catalysis, 9(2), 1026-1032. doi:10.1021/acscatal.8b04794Wang, S., Wang, P., Shi, D., He, S., Zhang, L., Yan, W., … Fan, W. (2020). Direct Conversion of Syngas into Light Olefins with Low CO2 Emission. ACS Catalysis, 10(3), 2046-2059. doi:10.1021/acscatal.9b04629Liu, T., Lu, T., Yang, M., Zhou, L., Yang, X., Gao, B., & Su, Y. (2019). Enhanced Catalytic Performance of CuO–ZnO–Al2O3/SAPO-5 Bifunctional Catalysts for Direct Conversion of Syngas to Light Hydrocarbons and Insights into the Role of Zeolite Acidity. Catalysis Letters, 149(12), 3338-3348. doi:10.1007/s10562-019-02901-9Li, N., Jiao, F., Pan, X., Ding, Y., Feng, J., & Bao, X. (2018). Size Effects of ZnO Nanoparticles in Bifunctional Catalysts for Selective Syngas Conversion. ACS Catalysis, 9(2), 960-966. doi:10.1021/acscatal.8b04105Arslan, M. T., Qureshi, B. A., Gilani, S. Z. A., Cai, D., Ma, Y., Usman, M., … Wei, F. (2019). Single-Step Conversion of H2-Deficient Syngas into High Yield of Tetramethylbenzene. ACS Catalysis, 9(3), 2203-2212. doi:10.1021/acscatal.8b04548Su, J., Wang, D., Wang, Y., Zhou, H., Liu, C., Liu, S., … He, M. (2018). Direct Conversion of Syngas into Light Olefins over Zirconium-Doped Indium(III) Oxide and SAPO-34 Bifunctional Catalysts: Design of Oxide Component and Construction of Reaction Network. ChemCatChem, 10(7), 1536-1541. doi:10.1002/cctc.201702054Liu, X., Zhou, W., Yang, Y., Cheng, K., Kang, J., Zhang, L., … Wang, Y. (2018). Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates. Chemical Science, 9(20), 4708-4718. doi:10.1039/c8sc01597jCheng, K., Zhou, W., Kang, J., He, S., Shi, S., Zhang, Q., … Wang, Y. (2017). Bifunctional Catalysts for One-Step Conversion of Syngas into Aromatics with Excellent Selectivity and Stability. Chem, 3(2), 334-347. doi:10.1016/j.chempr.2017.05.007Plana-Pallejà, J., Abelló, S., Berrueco, C., & Montané, D. (2016). Effect of zeolite acidity and mesoporosity on the activity of Fischer–Tropsch Fe/ZSM-5 bifunctional catalysts. Applied Catalysis A: General, 515, 126-135. doi:10.1016/j.apcata.2016.02.004Zhao, B., Zhai, P., Wang, P., Li, J., Li, T., Peng, M., … Ma, D. (2017). Direct Transformation of Syngas to Aromatics over Na-Zn-Fe 5 C 2 and Hierarchical HZSM-5 Tandem Catalysts. Chem, 3(2), 323-333. doi:10.1016/j.chempr.2017.06.017Yang, X., Wang, R., Yang, J., Qian, W., Zhang, Y., Li, X., … Chen, D. (2020). Exploring the Reaction Paths in the Consecutive Fe-Based FT Catalyst–Zeolite Process for Syngas Conversion. ACS Catalysis, 10(6), 3797-3806. doi:10.1021/acscatal.9b05449Huang, J., Wang, W., Fei, Z., Liu, Q., Chen, X., Zhang, Z., … Qiao, X. (2019). Enhanced Light Olefin Production in Chloromethane Coupling over Mg/Ca Modified Durable HZSM-5 Catalyst. Industrial & Engineering Chemistry Research, 58(13), 5131-5139. doi:10.1021/acs.iecr.8b05544Li, J., He, Y., Tan, L., Zhang, P., Peng, X., Oruganti, A., … Tsubaki, N. (2018). Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology. Nature Catalysis, 1(10), 787-793. doi:10.1038/s41929-018-0144-zSubramanian, V., Zholobenko, V. L., Cheng, K., Lancelot, C., Heyte, S., Thuriot, J., … Khodakov, A. Y. (2015). The Role of Steric Effects and Acidity in the Direct Synthesis of iso -Paraffins from Syngas on Cobalt Zeolite Catalysts. ChemCatChem, 8(2), 380-389. doi:10.1002/cctc.201500777Jiao, F., Pan, X., Gong, K., Chen, Y., Li, G., & Bao, X. (2018). Shape‐Selective Zeolites Promote Ethylene Formation from Syngas via a Ketene Intermediate. Angewandte Chemie International Edition, 57(17), 4692-4696. doi:10.1002/anie.201801397Li, N., Jiao, F., Pan, X., Chen, Y., Feng, J., Li, G., & Bao, X. (2019). High‐Quality Gasoline Directly from Syngas by Dual Metal Oxide–Zeolite (OX‐ZEO) Catalysis. Angewandte Chemie International Edition, 58(22), 7400-7404. doi:10.1002/anie.201902990Boronat, M., & Corma, A. (2019). What Is Measured When Measuring Acidity in Zeolites with Probe Molecules? ACS Catalysis, 9(2), 1539-1548. doi:10.1021/acscatal.8b04317Li, C., Vidal-Moya, A., Miguel, P. J., Dedecek, J., Boronat, M., & Corma, A. (2018). Selective Introduction of Acid Sites in Different Confined Positions in ZSM-5 and Its Catalytic Implications. ACS Catalysis, 8(8), 7688-7697. doi:10.1021/acscatal.8b02112Su, J., Zhou, H., Liu, S., Wang, C., Jiao, W., Wang, Y., … He, M. (2019). Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrOx/AlPO-18 bifunctional catalysts. Nature Communications, 10(1). doi:10.1038/s41467-019-09336-1Noh, G., Shi, Z., Zones, S. I., & Iglesia, E. (2018). Isomerization and β-scission reactions of alkanes on bifunctional metal-acid catalysts: Consequences of confinement and diffusional constraints on reactivity and selectivity. Journal of Catalysis, 368, 389-410. doi:10.1016/j.jcat.2018.03.033Noh, G., Zones, S. I., & Iglesia, E. (2018). Consequences of Acid Strength and Diffusional Constraints for Alkane Isomerization and β-Scission Turnover Rates and Selectivities on Bifunctional Metal-Acid Catalysts. The Journal of Physical Chemistry C, 122(44), 25475-25497. doi:10.1021/acs.jpcc.8b08460Yang, J., Pan, X., Jiao, F., Li, J., & Bao, X. (2017). Direct conversion of syngas to aromatics. Chemical Communications, 53(81), 11146-11149. doi:10.1039/c7cc04768aQiu, T., Wang, L., Lv, S., Sun, B., Zhang, Y., Liu, Z., … Li, J. (2017). SAPO-34 zeolite encapsulated Fe3C nanoparticles as highly selective Fischer-Tropsch catalysts for the production of light olefins. Fuel, 203, 811-816. doi:10.1016/j.fuel.2017.05.043Di, Z., Zhao, T., Feng, X., & Luo, M. (2018). A Newly Designed Core-Shell-Like Zeolite Capsule Catalyst for Synthesis of Light Olefins from Syngas via Fischer–Tropsch Synthesis Reaction. Catalysis Letters, 149(2), 441-448. doi:10.1007/s10562-018-2624-9Přech, J., Strossi Pedrolo, D. R., Marcilio, N. R., Gu, B., Peregudova, A. S., Mazur, M., … Khodakov, A. Y. (2020). Core–Shell Metal Zeolite Composite Catalysts for In Situ Processing of Fischer–Tropsch Hydrocarbons to Gasoline Type Fuels. ACS Catalysis, 10(4), 2544-2555. doi:10.1021/acscatal.9b04421Weber, J. L., Krans, N. A., Hofmann, J. P., Hensen, E. J. M., Zecevic, J., de Jongh, P. E., & de Jong, K. P. (2020). Effect of proximity and support material on deactivation of bifunctional catalysts for the conversion of synthesis gas to olefins and aromatics. Catalysis Today, 342, 161-166. doi:10.1016/j.cattod.2019.02.002Wang, T., Xu, Y., Shi, C., Jiang, F., Liu, B., & Liu, X. (2019). Direct production of aromatics from syngas over a hybrid FeMn Fischer–Tropsch catalyst and HZSM-5 zeolite: local environment effect and mechanism-directed tuning of the aromatic selectivity. Catalysis Science & Technology, 9(15), 3933-3946. doi:10.1039/c9cy00750dZhang, Q., Chen, G., Wang, Y., Chen, M., Guo, G., Shi, J., … Yu, J. (2018). High-Quality Single-Crystalline MFI-Type Nanozeolites: A Facile Synthetic Strategy and MTP Catalytic Studies. Chemistry of Materials, 30(8), 2750-2758. doi:10.1021/acs.chemmater.8b00527Zhang, Q., Mayoral, A., Terasaki, O., Zhang, Q., Ma, B., Zhao, C., … Yu, J. (2019). Amino Acid-Assisted Construction of Single-Crystalline Hierarchical Nanozeolites via Oriented-Aggregation and Intraparticle Ripening. Journal of the American Chemical Society, 141(9), 3772-3776. doi:10.1021/jacs.8b11734Wen, C., Wang, C., Chen, L., Zhang, X., Liu, Q., & Ma, L. (2019). Effect of hierarchical ZSM-5 zeolite support on direct transformation from syngas to aromatics over the iron-based catalyst. Fuel, 244, 492-498. doi:10.1016/j.fuel.2019.02.041Cheng, K., Zhang, L., Kang, J., Peng, X., Zhang, Q., & Wang, Y. (2014). Selective Transformation of Syngas into Gasoline-Range Hydrocarbons over Mesoporous H-ZSM-5-Supported Cobalt Nanoparticles. Chemistry - A European Journal, 21(5), 1928-1937. doi:10.1002/chem.201405277Peng, X., Cheng, K., Kang, J., Gu, B., Yu, X., Zhang, Q., & Wang, Y. (2015). Impact of Hydrogenolysis on the Selectivity of the Fischer-Tropsch Synthesis: Diesel Fuel Production over Mesoporous Zeolite-Y-Supported Cobalt Nanoparticles. Angewandte Chemie International Edition, 54(15), 4553-4556. doi:10.1002/anie.201411708Flores, C., Batalha, N., Ordomsky, V. V., Zholobenko, V. L., Baaziz, W., Marcilio, N. R., & Khodakov, A. Y. (2018). Direct Production of Iso-Paraffins from Syngas over Hierarchical Cobalt-ZSM-5 Nanocomposites Synthetized by using Carbon Nanotubes as Sacrificial Templates. ChemCatChem, 10(10), 2291-2299. doi:10.1002/cctc.201701848Li, H., Hou, B., Wang, J., Qin, C., Zhong, M., Huang, X., … Li, D. (2018). Direct conversion of syngas to isoparaffins over hierarchical beta zeolite supported cobalt catalyst for Fischer-Tropsch synthesis. Molecular Catalysis, 459, 106-112. doi:10.1016/j.mcat.2018.08.002Min, J.-E., Kim, S., Kwak, G., Kim, Y. T., Han, S. J., Lee, Y., … Kim, S. K. (2018). Role of mesopores in Co/ZSM-5 for the direct synthesis of liquid fuel by Fischer–Tropsch synthesis. Catalysis Science & Technology, 8(24), 6346-6359. doi:10.1039/c8cy01931bWang, Y., Gao, W., Kazumi, S., Fang, Y., Shi, L., Yoneyama, Y., … Tsubaki, N. (2019). Solvent-free anchoring nano-sized zeolite on layered double hydroxide for highly selective transformation of syngas to gasoline-range hydrocarbons. Fuel, 253, 249-256. doi:10.1016/j.fuel.2019.05.022Xu, Y., Liu, J., Wang, J., Ma, G., Lin, J., Yang, Y., … Ding, M. (2019). Selective Conversion of Syngas to Aromatics over Fe3O4@MnO2 and Hollow HZSM-5 Bifunctional Catalysts. ACS Catalysis, 9(6), 5147-5156. doi:10.1021/acscatal.9b01045Xu, Y., Wang, J., Ma, G., Lin, J., & Ding, M. (2019). Designing of Hollow ZSM-5 with Controlled Mesopore Sizes To Boost Gasoline Production from Syngas. ACS Sustainable Chemistry & Engineering, 7(21), 18125-18132. doi:10.1021/acssuschemeng.9b05217Javed, M., Cheng, S., Zhang, G., Dai, P., Cao, Y., Lu, C., … Shan, S. (2018). Complete encapsulation of zeolite supported Co based core with silicalite-1 shell to achieve high gasoline selectivity in Fischer-Tropsch synthesis. Fuel, 215, 226-231. doi:10.1016/j.fuel.2017.10.042Javed, M., Zhang, G., Gao, W., Cao, Y., Dai, P., Ji, X., … Sun, J. (2019). From hydrophilic to hydrophobic: A promising approach to tackle high CO2 selectivity of Fe-based Fischer-Tropsch microcapsule catalysts. Catalysis Today, 330, 39-45. doi:10.1016/j.cattod.2018.08.010Luk, H. T., Mondelli, C., Ferré, D. C., Stewart, J. A., & Pérez-Ramírez, J. (2017). Status and prospects in higher alcohols synthesis from syngas. Chemical Society Reviews, 46(5), 1358-1426

    Porous Single-Crystal-Based Inorganic Semiconductor Photocatalysts for Energy Production and Environmental Remediation: Preparation, Modification, and Applications

    Full text link
    This is the peer reviewed version of the following article: Niu, J., Albero, J., Atienzar, P., García, H., Porous Single-Crystal-Based Inorganic Semiconductor Photocatalysts for Energy Production and Environmental Remediation: Preparation, Modification, and Applications. Adv. Funct. Mater. 2020, 30, 1908984, which has been published in final form at https://doi.org/10.1002/adfm.201908984. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Semiconductor photocatalytic and photovoltaic performance depends on crystallinity and surface area to a large extent. One strategy that has recently emergyed to improve semiconductor photoresponse efficiency is their synthesis as porous single crystals (PSCs), therefore providing simultaneously high crystallinity, minimization of grain boundaries, and large specific surface area. Other factors, such as high density of active sites, and enhanced light absorption, also contribute to increased PSC photoresponse with respect to analogous bulk or amorphous materials. This review initially presents the concept and main properties of PSCs. Then, the synthetic routes and the applications as photocatalysts and as photovoltaic devices, mainly in sunlight applications, are summarized. The synthetic procedures have been classified according to the mechanism of pore generation. Applications cover photocatalysis for environmental remediation, solar fuels production, selective photooxidation of organic compounds, and photovoltaic devices. Finally, a summary and views on future developments are provided. The purpose of this review is to show how the use of PSCs is a powerful general methodology applicable beyond metal oxides and can ultimately lead to sufficient photoresponse efficiency, bringing these processes close to commercial application.Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa SEV2016-0683 and RTI2018-89023-CO2-R1) and by the Generalitat Valenciana (Prometeo 2017-083) is gratefully acknowledged. J.N. also gratefully acknowledges financial support from the Fundamental Research Funds for the Central Universities (2019XKQYMS76).Niu, J.; Albero-Sancho, J.; Atienzar Corvillo, PE.; García Gómez, H. (2020). Porous Single-Crystal-Based Inorganic Semiconductor Photocatalysts for Energy Production and Environmental Remediation: Preparation, Modification, and Applications. Advanced Functional Materials. 30(15):1-51. https://doi.org/10.1002/adfm.2019089841513015Lee, B., Yamashita, T., Lu, D., Kondo, J. N., & Domen, K. (2002). Single-Crystal Particles of Mesoporous Niobium−Tantalum Mixed Oxide. Chemistry of Materials, 14(2), 867-875. doi:10.1021/cm010775mCrossland, E. J. W., Noel, N., Sivaram, V., Leijtens, T., Alexander-Webber, J. A., & Snaith, H. J. (2013). Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature, 495(7440), 215-219. doi:10.1038/nature11936Liu, G., Yang, H. G., Pan, J., Yang, Y. Q., Lu, G. Q. (Max), & Cheng, H.-M. (2014). Titanium Dioxide Crystals with Tailored Facets. Chemical Reviews, 114(19), 9559-9612. doi:10.1021/cr400621zZheng, X., Lv, Y., Kuang, Q., Zhu, Z., Long, X., & Yang, S. (2014). Close-Packed Colloidal SiO2 as a Nanoreactor: Generalized Synthesis of Metal Oxide Mesoporous Single Crystals and Mesocrystals. Chemistry of Materials, 26(19), 5700-5709. doi:10.1021/cm5025475Jiao, W., Xie, Y., Chen, R., Zhen, C., Liu, G., Ma, X., & Cheng, H.-M. (2013). Synthesis of mesoporous single crystal rutile TiO2 with improved photocatalytic and photoelectrochemical activities. Chemical Communications, 49(100), 11770. doi:10.1039/c3cc46527fFang, W. Q., Huo, Z., Liu, P., Wang, X. L., Zhang, M., Jia, Y., … Yao, X. (2014). Fluorine-Doped Porous Single-Crystal Rutile TiO2Nanorods for Enhancing Photoelectrochemical Water Splitting. Chemistry - A European Journal, 20(36), 11439-11444. doi:10.1002/chem.201402914Bian, Z., Zhu, J., Wen, J., Cao, F., Huo, Y., Qian, X., … Lu, Y. (2010). Single-Crystal-like Titania Mesocages. Angewandte Chemie International Edition, 50(5), 1105-1108. doi:10.1002/anie.201004972Cho, S., Kim, S., Jung, D.-W., & Lee, K.-H. (2011). Formation of quasi-single crystalline porous ZnO nanostructures with a single large cavity. Nanoscale, 3(9), 3841. doi:10.1039/c1nr10609kXu, G., Deng, S., Zhang, Y., Wei, X., Yang, X., Liu, Y., … Han, G. (2014). Mesoporous-structure-tailored hydrothermal synthesis and mechanism of the SrTiO3 mesoporous spheres by controlling the silicate semipermeable membranes with the KOH concentrations. CrystEngComm, 16(10), 2025. doi:10.1039/c3ce41809jWei, L., Yang, Z., Ren, H., & Chen, X. (2010). Phase Transitional Behavior and Electrical Properties of Sr2K0.1Na0.9Nb5−xTaxO15 Ceramics. Journal of the American Ceramic Society, 93(12), 3986-3989. doi:10.1111/j.1551-2916.2010.04177.xHong, Z., Zhou, K., Huang, Z., & Wei, M. (2015). Iso-Oriented Anatase TiO2 Mesocages as a High Performance Anode Material for Sodium-Ion Storage. Scientific Reports, 5(1). doi:10.1038/srep11960Song, R.-Q., & Cölfen, H. (2009). Mesocrystals-Ordered Nanoparticle Superstructures. Advanced Materials, 22(12), 1301-1330. doi:10.1002/adma.200901365Weckhuysen, B. M., & Yu, J. (2015). Recent advances in zeolite chemistry and catalysis. Chemical Society Reviews, 44(20), 7022-7024. doi:10.1039/c5cs90100fRangnekar, N., Mittal, N., Elyassi, B., Caro, J., & Tsapatsis, M. (2015). Zeolite membranes – a review and comparison with MOFs. Chemical Society Reviews, 44(20), 7128-7154. doi:10.1039/c5cs00292cWang, C. W., Yang, S., Fang, W. Q., Liu, P., Zhao, H., & Yang, H. G. (2015). Engineered Hematite Mesoporous Single Crystals Drive Drastic Enhancement in Solar Water Splitting. Nano Letters, 16(1), 427-433. doi:10.1021/acs.nanolett.5b04059Wu, Q., Bao, S., Tian, B., Xiao, Y., & Zhang, J. (2016). Double-diffusion-based synthesis of BiVO4 mesoporous single crystals with enhanced photocatalytic activity for oxygen evolution. Chemical Communications, 52(47), 7478-7481. doi:10.1039/c6cc02737gNiu, J., Shen, S., Zhou, L., Liu, Z., Feng, P., Ou, X., & Qiang, Y. (2016). Synthesis and hydrogenation of anatase TiO2 microspheres composed of porous single crystals for significantly improved photocatalytic activity. RSC Advances, 6(67), 62907-62910. doi:10.1039/c6ra12053aLu, D., Ouyang, S., Xu, H., Li, D., Zhang, X., Li, Y., & Ye, J. (2016). Designing Au Surface-Modified Nanoporous-Single-Crystalline SrTiO3 to Optimize Diffusion of Surface Plasmon Resonance-Induce Photoelectron toward Enhanced Visible-Light Photoactivity. ACS Applied Materials & Interfaces, 8(14), 9506-9513. doi:10.1021/acsami.6b00889Jiang, S., Zhang, J., Qi, X., He, M., & Li, J. (2013). Large-area synthesis of diameter-controllable porous single crystal gallium nitride micro/nanotube arrays. CrystEngComm, 15(46), 9837. doi:10.1039/c3ce41803kLiu, H., Chen, X., Yan, S., Li, Z., & Zou, Z. (2014). Basic Molten Salt Route to Prepare Porous SrTiO3Nanocrystals for Efficient Photocatalytic Hydrogen Production. European Journal of Inorganic Chemistry, 2014(23), 3731-3735. doi:10.1002/ejic.201402280Li, C., Chen, G., Sun, J., Rao, J., Han, Z., Hu, Y., & Zhou, Y. (2015). A Novel Mesoporous Single-Crystal-Like Bi2WO6 with Enhanced Photocatalytic Activity for Pollutants Degradation and Oxygen Production. ACS Applied Materials & Interfaces, 7(46), 25716-25724. doi:10.1021/acsami.5b06995Choi, J., Song, S., Hörantner, M. T., Snaith, H. J., & Park, T. (2016). Well-Defined Nanostructured, Single-Crystalline TiO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells. ACS Nano, 10(6), 6029-6036. doi:10.1021/acsnano.6b01575Yu, Y., Zhang, J., Wu, X., Zhao, W., & Zhang, B. (2011). Nanoporous Single-Crystal-Like CdxZn1−xS Nanosheets Fabricated by the Cation-Exchange Reaction of Inorganic-Organic Hybrid ZnS-Amine with Cadmium Ions. Angewandte Chemie International Edition, 51(4), 897-900. doi:10.1002/anie.201105786Zhao, W., Liu, C., Cao, L., Yin, X., Xu, H., & Zhang, B. (2013). Porous single-crystalline CdS nanosheets as efficient visible light catalysts for aerobic oxidative coupling of amines to imines. RSC Advances, 3(45), 22944. doi:10.1039/c3ra43929aLiu, J., Hu, Z.-Y., Peng, Y., Huang, H.-W., Li, Y., Wu, M., … Su, B.-L. (2016). 2D ZnO mesoporous single-crystal nanosheets with exposed {0001} polar facets for the depollution of cationic dye molecules by highly selective adsorption and photocatalytic decomposition. Applied Catalysis B: Environmental, 181, 138-145. doi:10.1016/j.apcatb.2015.07.054Niu, J., Shen, S., He, S., Liu, Z., Feng, P., Zhang, S., … Zhu, Z. (2015). Synthesis and photoactivity of anatase porous single crystals with different pore sizes. Ceramics International, 41(9), 11936-11944. doi:10.1016/j.ceramint.2015.06.005Sivaram, V., Crossland, E. J. W., Leijtens, T., Noel, N. K., Alexander-Webber, J., Docampo, P., & Snaith, H. J. (2014). Observation of Annealing-Induced Doping in TiO2 Mesoporous Single Crystals for Use in Solid State Dye Sensitized Solar Cells. The Journal of Physical Chemistry C, 118(4), 1821-1827. doi:10.1021/jp410495kKondo, J. N., Takahara, Y., Lee, B., Lu, D., & Domen, K. (2002). Topics in Catalysis, 19(2), 171-177. doi:10.1023/a:1015255906229Jiang, H., Meng, X., Dai, H., Deng, J., Liu, Y., Zhang, L., … Zhang, R. (2012). High-performance porous spherical or octapod-like single-crystalline BiVO4 photocatalysts for the removal of phenol and methylene blue under visible-light illumination. Journal of Hazardous Materials, 217-218, 92-99. doi:10.1016/j.jhazmat.2012.02.073Liu, Y., Luo, Y., Elzatahry, A. A., Luo, W., Che, R., Fan, J., … Zhao, D. (2015). Mesoporous TiO2 Mesocrystals: Remarkable Defects-Induced Crystallite-Interface Reactivity and Their in Situ Conversion to Single Crystals. ACS Central Science, 1(7), 400-408. doi:10.1021/acscentsci.5b00256Xiong, Y., Liu, Y., Lan, K., Mei, A., Sheng, Y., Zhao, D., & Han, H. (2018). Fully printable hole-conductor-free mesoscopic perovskite solar cells based on mesoporous anatase single crystals. New Journal of Chemistry, 42(4), 2669-2674. doi:10.1039/c7nj04448hGirija, K., Thirumalairajan, S., Patra, A. K., Mangalaraj, D., Ponpandian, N., & Viswanathan, C. (2013). Organic additives assisted synthesis of mesoporous β-Ga2O3 nanostructures for photocatalytic dye degradation. Semiconductor Science and Technology, 28(3), 035015. doi:10.1088/0268-1242/28/3/035015Liu, H., Luo, M., Hu, J., Zhou, T., Chen, R., & Li, J. (2013). β-Bi2O3 and Er3+ doped β-Bi2O3 single crystalline nanosheets with exposed reactive {001} facets and enhanced photocatalytic performance. Applied Catalysis B: Environmental, 140-141, 141-150. doi:10.1016/j.apcatb.2013.04.009Qiu, Y., Xu, G.-L., Kuang, Q., Sun, S.-G., & Yang, S. (2012). Hierarchical WO3 flowers comprising porous single-crystalline nanoplates show enhanced lithium storage and photocatalysis. Nano Research, 5(11), 826-832. doi:10.1007/s12274-012-0266-6Cha, H. G., Kim, S. J., Lee, K. J., Jung, M. H., & Kang, Y. S. (2011). Single-Crystalline Porous Hematite Nanorods: Photocatalytic and Magnetic Properties. The Journal of Physical Chemistry C, 115(39), 19129-19135. doi:10.1021/jp206958gBharathi, S., Nataraj, D., Mangalaraj, D., Masuda, Y., Senthil, K., & Yong, K. (2009). Highly mesoporous α-Fe2O3nanostructures: preparation, characterization and improved photocatalytic performance towards Rhodamine B (RhB). Journal of Physics D: Applied Physics, 43(1), 015501. doi:10.1088/0022-3727/43/1/015501Liao, A., He, H., Tang, L., Li, Y., Zhang, J., Chen, J., … Zou, Z. (2018). Quasi-Topotactic Transformation of FeOOH Nanorods to Robust Fe2O3 Porous Nanopillars Triggered with a Facile Rapid Dehydration Strategy for Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 10(12), 10141-10146. doi:10.1021/acsami.8b00367Li, L., Yu, Y., Meng, F., Tan, Y., Hamers, R. J., & Jin, S. (2012). Facile Solution Synthesis of α-FeF3·3H2O Nanowires and Their Conversion to α-Fe2O3 Nanowires for Photoelectrochemical Application. Nano Letters, 12(2), 724-731. doi:10.1021/nl2036854Xu, T., Zheng, H., Zhang, P., Lin, W., & Sekiguchi, Y. (2015). Hydrothermal preparation of nanoporous TiO2 films with exposed {001} facets and superior photocatalytic activity. Journal of Materials Chemistry A, 3(37), 19115-19122. doi:10.1039/c5ta02640gXu, T., Zheng, H., Zhang, P., & Lin, W. (2016). Photocatalytic degradation of a low concentration pharmaceutical pollutant by nanoporous TiO2film with exposed {001} facets. RSC Advances, 6(98), 95818-95824. doi:10.1039/c6ra22011hLiu, Y., Shen, S., Ren, F., Chen, J., Fu, Y., Zheng, X., … Jiang, C. (2016). Fabrication of porous TiO2nanorod array photoelectrodes with enhanced photoelectrochemical water splitting by helium ion implantation. Nanoscale, 8(20), 10642-10648. doi:10.1039/c5nr05594fStein, A., Li, F., & Denny, N. R. (2007). Morphological Control in Colloidal Crystal Templating of Inverse Opals, Hierarchical Structures, and Shaped Particles. Chemistry of Materials, 20(3), 649-666. doi:10.1021/cm702107nYamamoto, E., & Kuroda, K. (2016). Colloidal Mesoporous Silica Nanoparticles. Bulletin of the Chemical Society of Japan, 89(5), 501-539. doi:10.1246/bcsj.20150420Li, J., Chang, H., Ma, L., Hao, J., & Yang, R. T. (2011). Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—A review. Catalysis Today, 175(1), 147-156. doi:10.1016/j.cattod.2011.03.034Ilić, B., & Wettstein, S. G. (2017). A review of adsorbate and temperature-induced zeolite framework flexibility. Microporous and Mesoporous Materials, 239, 221-234. doi:10.1016/j.micromeso.2016.10.005Zheng, X., Kuang, Q., Yan, K., Qiu, Y., Qiu, J., & Yang, S. (2013). Mesoporous TiO2 Single Crystals: Facile Shape-, Size-, and Phase-Controlled Growth and Efficient Photocatalytic Performance. ACS Applied Materials & Interfaces, 5(21), 11249-11257. doi:10.1021/am403482gZhou, Y., Yi, Q., Xing, M., Shang, L., Zhang, T., & Zhang, J. (2016). Graphene modified mesoporous titania single crystals with controlled and selective photoredox surfaces. Chemical Communications, 52(8), 1689-1692. doi:10.1039/c5cc07567jDong, C., Song, H., Zhou, Y., Dong, C., Shen, B., Yang, H., … Zhang, J. (2016). Sulfur nanoparticles in situ growth on TiO2 mesoporous single crystals with enhanced solar light photocatalytic performance. RSC Advances, 6(81), 77863-77869. doi:10.1039/c6ra17884gXing, M., Zhou, Y., Dong, C., Cai, L., Zeng, L., Shen, B., … Yin, Y. (2018). Modulation of the Reduction Potential of TiO2–x by Fluorination for Efficient and Selective CH4 Generation from CO2 Photoreduction. Nano Letters, 18(6), 3384-3390. doi:10.1021/acs.nanolett.8b00197Zhu, Z., Zheng, X., Bai, Y., Zhang, T., Wang, Z., Xiao, S., & Yang, S. (2015). Mesoporous SnO2 single crystals as an effective electron collector for perovskite solar cells. Physical Chemistry Chemical Physics, 17(28), 18265-18268. doi:10.1039/c5cp01534kWang, Y., Deng, Y., Fan, L., Zhao, Y., Shen, B., Wu, D., … Zhang, J. (2017). In situ strategy to prepare PDPB/SnO2 p–n heterojunction with a high photocatalytic activity. RSC Advances, 7(39), 24064-24069. doi:10.1039/c7ra02608kLiu, G., Yu, J. C., Lu, G. Q. (Max), & Cheng, H.-M. (2011). Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chemical Communications, 47(24), 6763. doi:10.1039/c1cc10665aChen, X., & Mao, S. S. (2007). Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications. Chemical Reviews, 107(7), 2891-2959. doi:10.1021/cr0500535Ong, W.-J., Tan, L.-L., Chai, S.-P., Yong, S.-T., & Mohamed, A. R. (2014). Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization. Nanoscale, 6(4), 1946. doi:10.1039/c3nr04655aYang, H. G., Sun, C. H., Qiao, S. Z., Zou, J., Liu, G., Smith, S. C., … Lu, G. Q. (2008). Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 453(7195), 638-641. doi:10.1038/nature06964Wu, T., Kang, X., Kadi, M. W., Ismail, I., Liu, G., & Cheng, H.-M. (2015). Enhanced photocatalytic hydrogen generation of mesoporous rutile TiO2 single crystal with wholly exposed {111} facets. Chinese Journal of Catalysis, 36(12), 2103-2108. doi:10.1016/s1872-2067(15)60996-2Yu, H., Wang, L., & Dargusch, M. (2016). Low-temperature templated synthesis of porous TiO2 single-crystals for solar cell applications. Solar Energy, 123, 17-22. doi:10.1016/j.solener.2015.10.044Zhen, C., Wu, T., Kadi, M. W., Ismail, I., Liu, G., & Cheng, H.-M. (2015). Design and construction of a film of mesoporous single-crystal rutile TiO2 rod arrays for photoelectrochemical water oxidation. Chinese Journal of Catalysis, 36(12), 2171-2177. doi:10.1016/s1872-2067(15)60981-0Wang, J., Bian, Z., Zhu, J., & Li, H. (2013). Ordered mesoporous TiO2with exposed (001) facets and enhanced activity in photocatalytic selective oxidation of alcohols. J. Mater. Chem. A, 1(4), 1296-1302. doi:10.1039/c2ta00035kYue, W., Randorn, C., Attidekou, P. S., Su, Z., Irvine, J. T. S., & Zhou, W. (2009). Syntheses, Li Insertion, and Photoactivity of Mesoporous Crystalline TiO2. Advanced Functional Materials, 19(17), 2826-2833. doi:10.1002/adfm.200900658Malgras, V., Ji, Q., Kamachi, Y., Mori, T., Shieh, F.-K., Wu, K. C.-W., … Yamauchi, Y. (2015). Templated Synthesis for Nanoarchitectured Porous Materials. Bulletin of the Chemical Society of Japan, 88(9), 1171-1200. doi:10.1246/bcsj.20150143Liu, Y., Lan, K., Li, S., Liu, Y., Kong, B., Wang, G., … Zhao, D. (2016). Constructing Three-Dimensional Mesoporous Bouquet-Posy-like TiO2 Superstructures with Radially Oriented Mesochannels and Single-Crystal Walls. Journal of the American Chemical Society, 139(1), 517-526. doi:10.1021/jacs.6b11641Lin, J., Zhao, L., Heo, Y.-U., Wang, L., Bijarbooneh, F. H., Mozer, A. J., … Kim, J. H. (2015). Mesoporous anatase single crystals for efficient Co(2+/3+)-based dye-sensitized solar cells. Nano Energy, 11, 557-567. doi:10.1016/j.nanoen.2014.11.017Shi, W., Zhang, X., Brillet, J., Huang, D., Li, M., Wang, M., & Shen, Y. (2016). Significant enhancement of the photoelectrochemical activity of WO3 nanoflakes by carbon quantum dots decoration. Carbon, 105, 387-393. doi:10.1016/j.carbon.2016.04.051Wang, Q., Yuan, L., Dun, M., Yang, X., Chen, H., Li, J., & Hu, J. (2016). Synthesis and characterization of visible light responsive Bi3NbO7 porous nanosheets photocatalyst. Applied Catalysis B: Environmental, 196, 127-134. doi:10.1016/j.apcatb.2016.05.026Tan, B., Zhang, X., Li, Y., Chen, H., Ye, X., Wang, Y., & Ye, J. (2017). Anatase TiO 2 Mesocrystals: Green Synthesis, In Situ Conversion to Porous Single Crystals, and Self‐Doping Ti 3+ for Enhanced Visible Light Driven Photocatalytic Removal of NO. Chemistry – A European Journal, 23(23), 5478-5487. doi:10.1002/chem.201605294Chetia, T. R., Ansari, M. S., & Qureshi, M. (2015). Ethyl Cellulose and Cetrimonium Bromide Assisted Synthesis of Mesoporous, Hexagon Shaped ZnO Nanodisks with Exposed ±{0001} Polar Facets for Enhanced Photovoltaic Performance in Quantum Dot Sensitized Solar Cells. ACS Applied Materials & Interfaces, 7(24), 13266-13279. doi:10.1021/acsami.5b01039Zhao, Y., Zhang, Y., Liu, H., Ji, H., Ma, W., Chen, C., … Zhao, J. (2013). Control of Exposed Facet and Morphology of Anatase Crystals through TiOxFy Precursor Synthesis and Impact of the Facet on Crystal Phase Transition. Chemistry of Materials, 26(2), 1014-1018. doi:10.1021/cm403054wJin, Z., Zhang, Y.-X., Meng, F.-L., Jia, Y., Luo, T., Yu, X.-Y., … Huang, X.-J. (2014). Facile synthesis of porous single crystalline ZnO nanoplates and their application in photocatalytic reduction of Cr(VI) in the presence of phenol. Journal of Hazardous Materials, 276, 400-407. doi:10.1016/j.jhazmat.2014.05.059Li, Z., Zhou, Y., Xue, G., Yu, T., Liu, J., & Zou, Z. (2012). Fabrication of hierarchically assembled microspheres consisting of nanoporous ZnO nanosheets for high-efficiency dye-sensitized solar cells. Journal of Materials Chemistry, 22(29), 14341. doi:10.1039/c2jm32823bQiu, Y., Chen, W., & Yang, S. (2010). Facile hydrothermal preparation of hierarchically assembled, porous single-crystalline ZnO nanoplates and their application in dye-sensitized solar cells. J. Mater. Chem., 20(5), 1001-1006. doi:10.1039/b917305fHosono, E., Tokunaga, T., Ueno, S., Oaki, Y., Imai, H., Zhou, H., & Fujihara, S. (2012). Crystal-Growth Process of Single-Crystal-like Mesoporous ZnO through a Competitive Reaction in Solution. Crystal Growth & Design, 12(6), 2923-2931. doi:10.1021/cg300116hDong, J.-Y., Lin, C.-H., Hsu, Y.-J., Lu, S.-Y., & Wong, D. S.-H. (2012). Single-crystalline mesoporous ZnO nanosheets prepared with a green antisolvent method exhibiting excellent photocatalytic efficiencies. CrystEngComm, 14(14), 4732. doi:10.1039/c2ce06739kLuo, Q.-P., Wang, B., & Cao, Y. (2017). Single-crystalline porous ZnO nanosheet frameworks for efficient fully flexible dye-sensitized solar cells. Journal of Alloys and Compounds, 695, 3324-3330. doi:10.1016/j.jallcom.2016.10.130Xu, Y., Wen, W., & Wu, J.-M. (2018). Titania nanowires functionalized polyester fabrics with enhanced photocatalytic and antibacterial performances. Journal of Hazardous Materials, 343, 285-297. doi:10.1016/j.jhazmat.2017.09.044Dong, Q., Yin, S., Guo, C., Wu, X., Kumada, N., Takei, T., … Sato, T. (2014). Single-crystalline porous NiO nanosheets prepared from β-Ni(OH)2 nanosheets: Magnetic property and photocatalytic activity. Applied Catalysis B: Environmental, 147, 741-747. doi:10.1016/j.apcatb.2013.10.007Ghosh, S., Roy, M., & Naskar, M. K. (2014). Template-free synthesis of mesoporous single-crystal CuO particles with dumbbell-shaped morphology. Materials Letter

    Fully gapped superconducting state in Au2Pb: a natural candidate for topological superconductor

    Full text link
    We measured the ultra-low-temperature specific heat and thermal conductivity of Au2_2Pb single crystal, a possible three-dimensional Dirac semimetal with a superconducting transition temperature TcT_c \approx 1.05 K. The electronic specific heat can be fitted by a two-band s-wave model, which gives the gap amplitudes Δ1\Delta_1(0)/kBTck_BT_c = 1.38 and Δ2\Delta_2(0)/kBTck_BT_c = 5.25. From the thermal conductivity measurements, a negligible residual linear term κ0/T\kappa_0/T in zero field and a slow field dependence of κ0/T\kappa_0/T at low field are obtained. These results suggest that Au2_2Pb has a fully gapped superconducting state in the bulk, which is a necessary condition for topological superconductor if Au2_2Pb is indeed one.Comment: 6 pages, 4 figure

    In situ visualization by X-Ray computed tomography on sulfur stabilization and lithium polysulfides immobilization in S@HCS/MnOₓ cathode

    Get PDF
    The lithium-sulfur (Li-S) batteries have high theoretical energy density, exceeding that of the lithium-ion batteries. However, their practical applications are hindered by the capacity decay due to lithium polysulfide shuttle effect and sulfur volume expansion. Here, we design a S@hollow carbon with porous shell/MnOx (S@HCS/MnOx) cathode to accommodate and immobilize sulfur and polysulfides, and develop a non-destructive technique X-ray computed tomography (X-ray CT) to in situ visualize the volume expansion of Li-S cathode. The designed cathode achieves a specific capacity of ∼1100 mAh g-1 at 0.2 C with a fade rate of 0.18% per cycle over 300 cycles. The X-ray CT shows that only 16% volume expansion and 70% volume fraction of solid sulfur remaining in the S@HCS/MnOx cathode, superior to the commercial cathode with 40% volume expansion and 5% volume remaining of solid sulfur particles. This is the first reported visualization evidence for the effectiveness of hollow carbon structure in accommodating cathode volume expansion and immobilizing sulfur shuttling. X-ray CT can serve as a powerful in situ tool to trace the active materials and then feedback to the structure design, which helps develop efficient and reliable energy storage systems
    corecore