1,545 research outputs found

    Fluid Acquisition and Resupply Experiments on Space Shuttle Flights STS-53 and STS-57

    Get PDF
    The Fluid Acquisition and Resupply Experiment (FARE) program, managed by the Marshall Space Flight Center Space Propulsion Branch with Martin Marietta Civil Space and Communications as the contractor, consisted of two flights designated FARE I and FARE II. FARE I flew in December 1992 on STS-53 with a screen channel liquid acquisition device (LAD) and FARE II flew in June 1993 on STS-57 with a vane-type LAD. Thus, the FARE I and II flights represent the two basic LAD categories usually considered for in-space fluid management. Although both LAD types have been used extensively, the usefulness of the on-orbit data has been constrained by the lack of experimentation beyond predicted performance limits, including both propellant fill and expulsion. Therefore, the FARE tests were designed to obtain data that would satisfy two primary objectives: (1) Demonstrate the performance of the two types of LADs, screen channel and vane, and (2) support the anchoring of analytical models. Both flights were considered highly successful in meeting these two primary objectives

    Genomic correlates of recombination rate and its variability across eight recombination maps in the western honey bee (Apis mellifera L.)

    Get PDF
    Background: Meiotic recombination has traditionally been explained based on the structural requirement to stabilize homologous chromosome pairs to ensure their proper meiotic segregation. Competing hypotheses seek to explain the emerging findings of significant heterogeneity in recombination rates within and between genomes, but intraspecific comparisons of genome-wide recombination patterns are rare. The honey bee (Apis mellifera) exhibits the highest rate of genomic recombination among multicellular animals with about five cross-over events per chromatid. Results: Here, we present a comparative analysis of recombination rates across eight genetic linkage maps of the honey bee genome to investigate which genomic sequence features are correlated with recombination rate and with its variation across the eight data sets, ranging in average marker spacing ranging from 1 Mbp to 120 kbp. Overall, we found that GC content explained best the variation in local recombination rate along chromosomes at the analyzed 100 kbp scale. In contrast, variation among the different maps was correlated to the abundance of microsatellites and several specific tri- and tetra-nucleotides. Conclusions: The combined evidence from eight medium-scale recombination maps of the honey bee genome suggests that recombination rate variation in this highly recombining genome might be due to the DNA configuration instead of distinct sequence motifs. However, more fine-scale analyses are needed. The empirical basis of eight differing genetic maps allowed for robust conclusions about the correlates of the local recombination rates and enabled the study of the relation between DNA features and variability in local recombination rates, which is particularly relevant in the honey bee genome with its exceptionally high recombination rate. © 2014 Ross et al

    Sensitivity of air pollution exposure and disease burden to emission changes in China using machine learning emulation

    Get PDF
    Machine learning models can emulate chemical transport models, reducing computational costs and enabling more experimentation. We developed emulators to predict annual−mean fine particulate matter (PM(2.5)) and ozone (O(3)) concentrations and their associated chronic health impacts from changes in five major emission sectors (residential, industrial, land transport, agriculture, and power generation) in China. The emulators predicted 99.9% of the variance in PM(2.5) and O(3) concentrations. We used these emulators to estimate how emission reductions can attain air quality targets. In 2015, we estimate that PM(2.5) exposure was 47.4 Όg m(−3) and O(3) exposure was 43.8 ppb, associated with 2,189,700 (95% uncertainty interval, 95UI: 1,948,000–2,427,300) premature deaths per year, primarily from PM(2.5) exposure (98%). PM(2.5) exposure and the associated disease burden were most sensitive to industry and residential emissions. We explore the sensitivity of exposure and health to different combinations of emission reductions. The National Air Quality Target (35 Όg m(−3)) for PM(2.5) concentrations can be attained nationally with emission reductions of 72% in industrial, 57% in residential, 36% in land transport, 35% in agricultural, and 33% in power generation emissions. We show that complete removal of emissions from these five sectors does not enable the attainment of the WHO Annual Guideline (5 Όg m(−3)) due to remaining air pollution from other sources. Our work provides the first assessment of how air pollution exposure and disease burden in China varies as emissions change across these five sectors and highlights the value of emulators in air quality research

    On the Particle Data Group evaluation of Psi' and chi_c Branching Ratios

    Get PDF
    I propose a new evaluation of ψâ€Č(2S)\psi'(2S) and χc(1P)\chi_c(1P) branching ratios which avoids the correlations affecting the current Particle Data Group evaluation. These correlations explain the apparent technique-dependent discrepancies between the available determinations of the B(χc(1P)→ppˉ){\cal B}(\chi_c(1P)\to p\bar p) and Γ(χc(1P)→γγ)\Gamma(\chi_c(1P)\to \gamma\gamma) under the hypotesis that the current values of the ψâ€Č(2S)→χc(1P)Îł\psi'(2S)\to\chi_c(1P)\gamma branching ratios are overestimated. In the process I also noticed that Particle Data Group has not restated many of the older measurements, when necessary, for the new value of B(J/ψ→l+l−){\cal B}(J/\psi\to l^+l^-), which significantly affects the evaluation of some relevant ψâ€Č(2S)\psi'(2S) and χc(1P)\chi_c(1P) exclusive branching ratios.Comment: 13 pages. Revised version. Submitted to Phys. Rev.

    Fragmentation production of doubly heavy baryons

    Get PDF
    Baryons with a single heavy quark are being studied experimentally at present. Baryons with two units of heavy flavor will be abundantly produced not only at future colliders, but also at existing facilities. In this paper we study the production via heavy quark fragmentation of baryons containing two heavy quarks at the Tevatron, the LHC, HERA, and the NLC. The production rate is woefully small at HERA and at the NLC, but significant at pppp and ppˉp\bar{p} machines. We present distributions in various kinematical variables in addition to the integrated cross sections at hadron colliders.Comment: 13 pages, macro package epsfig needed, 6 .eps figure files in a separate uuencoded, compressed and tarred file; complete paper available at http://www.physics.carleton.ca/~mad/papers/paper.p

    Optimal Renormalization Scale and Scheme for Exclusive Processes

    Get PDF
    We use the BLM method to fix the renormalization scale of the QCD coupling in exclusive hadronic amplitudes such as the pion form factor and the photon-to-pion transition form factor at large momentum transfer. Renormalization-scheme-independent commensurate scale relations are established which connect the hard scattering subprocess amplitudes that control exclusive processes to other QCD observables such as the heavy quark potential and the electron-positron annihilation cross section. The commensurate scale relation connecting the heavy quark potential, as determined from lattice gauge theory, to the photon-to-pion transition form factor is in excellent agreement with Îłe→π0e\gamma e \to \pi^0 e data assuming that the pion distribution amplitude is close to its asymptotic form 3fπx(1−x)\sqrt{3}f_\pi x(1-x). We also reproduce the scaling and normalization of the ÎłÎłâ†’Ï€+π−\gamma \gamma \to \pi^+ \pi^- data at large momentum transfer. Because the renormalization scale is small, we argue that the effective coupling is nearly constant, thus accounting for the nominal scaling behavior of the data. However, the normalization of the space-like pion form factor Fπ(Q2)F_\pi(Q^2) obtained from electroproduction experiments is somewhat higher than that predicted by the corresponding commensurate scale relation. This discrepancy may be due to systematic errors introduced by the extrapolation of the γ∗p→π+n\gamma^* p \to \pi^+ n electroproduction data to the pion pole.Comment: 22 pages, Latex, 7 Latex figures. Several references added, discussion of scale fixing revised for clarity. Final version to appear in Phys. Rev.

    Precision Measurement of the Ds∗+−Ds+D_s^{*+}- D_s^+ Mass Difference

    Get PDF
    We have measured the vector-pseudoscalar mass splitting M(Ds∗+)−M(Ds+)=144.22±0.47±0.37MeVM(D_s^{*+})-M(D_s^+) = 144.22\pm 0.47\pm 0.37 MeV, significantly more precise than the previous world average. We minimize the systematic errors by also measuring the vector-pseudoscalar mass difference M(D∗0)−M(D0)M(D^{*0})-M(D^0) using the radiative decay D∗0→D0ÎłD^{*0}\rightarrow D^0\gamma, obtaining [M(Ds∗+)−M(Ds+)]−[M(D∗0)−M(D0)]=2.09±0.47±0.37MeV[M(D_s^{*+})-M(D_s^+)]-[M(D^{*0})-M(D^0)] = 2.09\pm 0.47\pm 0.37 MeV. This is then combined with our previous high-precision measurement of M(D∗0)−M(D0)M(D^{*0})-M(D^0), which used the decay D∗0→D0π0D^{*0}\rightarrow D^0\pi^0. We also measure the mass difference M(Ds+)−M(D+)=99.5±0.6±0.3M(D_s^+)-M(D^+)=99.5\pm 0.6\pm 0.3 MeV, using the ϕπ+\phi\pi^+ decay modes of the Ds+D_s^+ and D+D^+ mesons.Comment: 18 pages uuencoded compressed postscript (process with uudecode then gunzip). hardcopies with figures can be obtained by sending mail to: [email protected]

    Photon-Photon and Pomeron-Pomeron Processes in Peripheral Heavy Ion Collisions

    Get PDF
    We estimate the cross sections for the production of resonances, pion pairs and a central cluster of hadrons in peripheral heavy-ion collisions through two-photon and double-pomeron exchange, at energies that will be available at RHIC and LHC. The effect of the impact parameter in the diffractive reactions is introduced, and imposing the condition for realistic peripheral collisions we verify that in the case of very heavy ions the pomeron-pomeron contribution is indeed smaller than the electromagnetic one. However, they give a non-negligible background in the collision of light ions. This diffractive background will be more important at RHIC than at LHC.Comment: 22 pages, 1 Postscript figures, 4 tables, to appear in Phys. Rev.
    • 

    corecore