36 research outputs found

    Multi-Criteria Decision Analysis as a tool to extract fishing footprints and estimate fishing pressure: application to small scale coastal fisheries and implications for management in the context of the Maritime Spatial Planning Directive

    Get PDF
    In the context of the Maritime Spatial Planning Directive and with the intention of contributing to the implementation of a future maritime spatial plan, it was decided to analyze data from the small scale coastal fisheries sector of Greece and estimate the actual extent of its activities, which is largely unknown to date. To this end we identified the most influential components affecting coastal fishing: fishing capacity, bathymetry, distance from coast, Sea Surface Chlorophyll (Chl-a) concentration, legislation, marine traffic activity, trawlers and purse seiners fishing effort and no-take zones. By means of Multi-Criteria Decision Analysis (MCDA) conducted through a stepwise procedure, the potential fishing footprint with the corresponding fishing intensity was derived. The method provides an innovative and cost-effective way to assess the impact of the, notoriously hard to assess, coastal fleet. It was further considered how the inclusion of all relevant anthropogenic activities (besides fishing) could provide the background needed to plan future marine activities in the framework of Marine Spatial Planning (MSP) and form the basis for a more realistic management approach

    Repeatability of brain phase-based magnetic resonance electric properties tomography methods and effect of compressed SENSE and RF shimming

    Full text link
    Magnetic resonance electrical properties tomography (MREPT) is an emerging imaging modality to noninvasively measure tissue conductivity and permittivity. Implementation of MREPT in the clinic requires repeatable measurements at a short scan time and an appropriate protocol. The aim of this study was to investigate the repeatability of conductivity measurements using phase-based MREPT and the effects of compressed SENSE (CS), and RF shimming on the precision of conductivity measurements. Conductivity measurements using turbo spin echo (TSE) and three-dimensional balanced fast field echo (bFFE) with CS factors were repeatable. Conductivity measurement using bFFE phase showed smaller mean and variance that those measured by TSE. The conductivity measurements using bFFE showed minimal deviation with CS factors up to 8, with deviation increasing at CS factors > 8. Subcortical structures produced less consistent measurements than cortical parcellations at higher CS factors. RF shimming using full slice coverage 2D dual refocusing echo acquisition mode (DREAM) and full coverage 3D dual TR approaches further improved measurement precision. BFFE is a more optimal sequence than TSE for phase-based MREPT in brain. Depending on the area of the brain being measured, the scan can be safely accelerated with compressed SENSE without sacrifice of precision, offering the potential to employ MREPT in clinical research and applications. RF shimming with better field mapping further improves precision of the conductivity measures

    A pilot study: can heart rate variability (HRV) be determined using short-term photoplethysmograms?

    Get PDF
    To date, there have been no studies that investigate the independent use of the photoplethysmogram (PPG) signal to determine heart rate variability (HRV). However, researchers have demonstrated that PPG signals offer an alternative way of measuring HRV when electrocardiogram (ECG) and PPG signals are collected simultaneously. Based on these findings, we take the use of PPGs to the next step and investigate a different approach to show the potential independent use of short 20-second PPG signals collected from healthy subjects after exercise in a hot environment to measure HRV. Our hypothesis is that if the PPG--HRV indices are negatively correlated with age, then short PPG signals are appropriate measurements for extracting HRV parameters. The PPGs of 27 healthy male volunteers at rest and after exercise were used to determine the HRV indices: standard deviation of heartbeat interval (SDNN) and the root-mean square of the difference of successive heartbeats (RMSSD). The results indicate that the use of the aaaa interval, derived from the acceleration of PPG signals, is promising in determining the HRV statistical indices SDNN and RMSSD over 20-second PPG recordings. Moreover, the post-exercise SDNN index shows a negative correlation with age. There tends to be a decrease of the PPG--SDNN index with increasing age, whether at rest or after exercise. This new outcome validates the negative relationship between HRV in general with age, and consequently provides another evidence that short PPG signals have the potential to be used in heart rate analysis without the need to measure lengthy sequences of either ECG or PPG signals.Mohamed Elgendi, Ian Norton, Matt Brearley, Socrates Dokos, Derek Abbott, Dale Schuurman

    Features of Motion Around Global Monopole in Asymptotically dS/AdS Spacetime

    Get PDF
    In this paper, we study the motion of test particle and light around the Global Monopole in asymptotically dS/AdS spacetime. The motion of a test particle and light in the exterior region of the global monopole in dS/AdS spacetime has been investigated. Although the test particle's motion is quite different from the case in asymptotically flat spacetime, the behaviors of light(null geodesic) remain unchanged except a energy(frequency) shift. Through a phase-plane analysis, we prove analytically that the existence of a periodic solution to the equation of motion for a test particle will not be altered by the presence of cosmological constant and the deficit angle, whose presence only affects the position and type of the critical point on the phase plane. We also show that the apparent capture section of the global monopole in dS/AdS spacetime is quite different from that in flat spacetime.Comment: 15 pages, 4 PS figures, accepted for publication in Class. Quantum Gra

    Mediating Retinal Ganglion Cell Spike Rates Using High-Frequency Electrical Stimulation

    Get PDF
    Recent retinal studies have directed more attention to sophisticated stimulation strategies based on high-frequency (>1.0 kHz) electrical stimulation (HFS). In these studies, each retinal ganglion cell (RGC) type demonstrated a characteristic stimulus-strength-dependent response to HFS, offering the intriguing possibility of focally targeting retinal neurons to provide useful visual information by retinal prosthetics. Ionic mechanisms are known to affect the responses of electrogenic cells during electrical stimulation. However, how these mechanisms affect RGC responses is not well understood at present, particularly when applying HFS. Here, we investigate this issue via an in silico model of the RGC. We calibrate and validate the model using an in vitro retinal preparation. An RGC model based on accurate biophysics and realistic representation of cell morphology, was used to investigate how RGCs respond to HFS. The model was able to closely replicate the stimulus-strength-dependent suppression of RGC action potentials observed experimentally. Our results suggest that spike inhibition during HFS is due to local membrane hyperpolarization caused by outward membrane currents near the stimulus electrode. In addition, the extent of HFS-induced inhibition can be largely altered by the intrinsic properties of the inward sodium current. Finally, stimulus-strength-dependent suppression can be modulated by a wide range of stimulation frequencies, under generalized electrode placement conditions. In vitro experiments verified the computational modeling data. This modeling and experimental approach can be extended to further our understanding on the effects of novel stimulus strategies by simulating RGC stimulus-response profiles over a wider range of stimulation frequencies and electrode locations than have previously been explored

    Revisiting QRS detection methodologies for portable, wearable, battery-operated, and wireless ECG systems

    Get PDF
    Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices.Mohamed Elgendi, BjΓΆrn Eskofier, Socrates Dokos, Derek Abbot

    Greece

    No full text
    corecore