52 research outputs found

    Placental opioid-enhancing factor (POEF): Generalizability of effects

    Get PDF
    A substance in amniotic fluid and placenta (POEF for Placental Opioid-Enhancing Factor) has been shown to enhance opiate- or opioid-mediated analgesia in rats. Recent studies have only touched on the generalizability of the phenomenon. The present studies further tested the generalizability of the POEF effect: they examined sex specificity of the mechanism, whether POEF activity exists in afterbirth material of species other than the rat; whether POEF activity exists in tissue other than afterbirth material; whether POEF activity could be demonstrated after injection rather than ingestion of afterbirth material; and whether POEF enhances all opioid-mediated phenomena. We found that (a) POEF is effective in male rats as well as in female rats; (b) POEF activity exists in human and dolphin afterbirth material; (c) ingestion of pregnant-rat liver does not produce enhancement of opioid-mediated analgesia; (d) POEF does not seem to be effective when amniotic fluid is injected either IPO or SC; and (e) POEF does not modify morphine-induced hyperthermia

    A draft human pangenome reference

    Get PDF
    Here the Human Pangenome Reference Consortium presents a first draft of the human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individuals. These assemblies cover more than 99% of the expected sequence in each genome and are more than 99% accurate at the structural and base pair levels. Based on alignments of the assemblies, we generate a draft pangenome that captures known variants and haplotypes and reveals new alleles at structurally complex loci. We also add 119 million base pairs of euchromatic polymorphic sequences and 1,115 gene duplications relative to the existing reference GRCh38. Roughly 90 million of the additional base pairs are derived from structural variation. Using our draft pangenome to analyse short-read data reduced small variant discovery errors by 34% and increased the number of structural variants detected per haplotype by 104% compared with GRCh38-based workflows, which enabled the typing of the vast majority of structural variant alleles per sample
    corecore