1,469 research outputs found

    A new code for Fourier-Legendre analysis of large datasets: first results and a comparison with ring-diagram analysis

    Full text link
    Fourier-Legendre decomposition (FLD) of solar Doppler imaging data is a promising method to estimate the sub-surface solar meridional flow. FLD is sensible to low-degree oscillation modes and thus has the potential to probe the deep meridional flow. We present a newly developed code to be used for large scale FLD analysis of helioseismic data as provided by the Global Oscillation Network Group (GONG), the Michelson Doppler Imager (MDI) instrument, and the upcoming Helioseismic and Magnetic Imager (HMI) instrument. First results obtained with the new code are qualitatively comparable to those obtained from ring-diagram analyis of the same time series.Comment: 4 pages, 2 figures, 4th HELAS International Conference "Seismological Challenges for Stellar Structure", 1-5 February 2010, Arrecife, Lanzarote (Canary Islands

    The photospheric solar oxygen project: III. Investigation of the centre-to-limb variation of the 630nm [OI]-NiI blend

    Full text link
    The solar photospheric abundance of oxygen is still a matter of debate. For about ten years some determinations have favoured a low oxygen abundance which is at variance with the value inferred by helioseismology. Among the oxygen abundance indicators, the forbidden line at 630nm has often been considered the most reliable even though it is blended with a NiI line. In Papers I and Paper II of this series we reported a discrepancy in the oxygen abundance derived from the 630nm and the subordinate [OI] line at 636nm in dwarf stars, including the Sun. Here we analyse several, in part new, solar observations of the the centre-to-limb variation of the spectral region including the blend at 630nm in order to separate the individual contributions of oxygen and nickel. We analyse intensity spectra observed at different limb angles in comparison with line formation computations performed on a CO5BOLD 3D hydrodynamical simulation of the solar atmosphere. The oxygen abundances obtained from the forbidden line at different limb angles are inconsistent if the commonly adopted nickel abundance of 6.25 is assumed in our local thermodynamic equilibrium computations. With a slightly lower nickel abundance, A(Ni)~6.1, we obtain consistent fits indicating an oxygen abundance of A(O)=8.73+/-0.05. At this value the discrepancy with the subordinate oxygen line remains. The derived value of the oxygen abundance supports the notion of a rather low oxygen abundance in the solar hotosphere. However, it is disconcerting that the forbidden oxygen lines at 630 and 636nm give noticeably different results, and that the nickel abundance derived here from the 630nm blend is lower than expected from other nickel lines.Comment: to appear in A&

    Critical properties of the double exchange ferromagnet Nd0.4Pb0.4MnO3

    Full text link
    Results of a study of dc-magnetization M(T, H), performed on a Nd0.6Pb0.4MnO3 single crystal in the temperature range around T_C (Curie temperature) which embraces the critical region | epsilon | = |T -T_C |/T_C <= 0.05 are reported. The magnetic data analyzed in the critical region using the Kouvel-Fisher method give the values for the T_C =156.47 +/- 0.06 K and the critical exponents, beta = 0.374 +/- 0.006 (from the temperature dependence of magnetization), and gamma = 1.329 +/- 0.003 (from the temperature dependence of initial susceptibility). The critical isotherm M(T_C, H) gives delta = 4.547 +/- 0.1. Thus the scaling law gamma+beta=delta beta is fulfilled. The critical exponents obey the single scaling-equation of state M(H, epsilon) = epsilon^b f_+/- (H/epsilon^(beta + gamma)) where, f_+ for T > T_C and f_- for T< T_C. The exponent values are very close to those expected for the universality class of 3D Heisenberg ferromagnets with short-range interactions.Comment: 19 pages, including 6 figure

    Solitonic spin-liquid state due to the violation of the Lifshitz condition in Fe1+y_{1+y}Te

    Full text link
    A combination of phenomenological analysis and M\"ossbauer spectroscopy experiments on the tetragonal Fe1+y_{1+y}Te system indicates that the magnetic ordering transition in compounds with higher Fe-excess, y≄y\ge 0.11, is unconventional. Experimentally, a liquid-like magnetic precursor with quasi-static spin-order is found from significantly broadened M\"ossbauer spectra at temperatures above the antiferromagnetic transition. The incommensurate spin-density wave (SDW) order in Fe1+y_{1+y}Te is described by a magnetic free energy that violates the weak Lifshitz condition in the Landau theory of second-order transitions. The presence of multiple Lifshitz invariants provides the mechanism to create multidimensional, twisted, and modulated solitonic phases.Comment: 5 pages, 2 figure

    The Univariate Marginal Distribution Algorithm Copes Well With Deception and Epistasis

    Full text link
    In their recent work, Lehre and Nguyen (FOGA 2019) show that the univariate marginal distribution algorithm (UMDA) needs time exponential in the parent populations size to optimize the DeceptiveLeadingBlocks (DLB) problem. They conclude from this result that univariate EDAs have difficulties with deception and epistasis. In this work, we show that this negative finding is caused by an unfortunate choice of the parameters of the UMDA. When the population sizes are chosen large enough to prevent genetic drift, then the UMDA optimizes the DLB problem with high probability with at most λ(n2+2eln⁥n)\lambda(\frac{n}{2} + 2 e \ln n) fitness evaluations. Since an offspring population size λ\lambda of order nlog⁥nn \log n can prevent genetic drift, the UMDA can solve the DLB problem with O(n2log⁥n)O(n^2 \log n) fitness evaluations. In contrast, for classic evolutionary algorithms no better run time guarantee than O(n3)O(n^3) is known (which we prove to be tight for the (1+1){(1+1)} EA), so our result rather suggests that the UMDA can cope well with deception and epistatis. From a broader perspective, our result shows that the UMDA can cope better with local optima than evolutionary algorithms; such a result was previously known only for the compact genetic algorithm. Together with the lower bound of Lehre and Nguyen, our result for the first time rigorously proves that running EDAs in the regime with genetic drift can lead to drastic performance losses

    Effect of Particle Size on Droplet Infiltration into Hydrophobic Porous Media As a Model of Water Repellent Soil

    Get PDF
    The wettability of soil is of great importance for plants and soil biota, and in determining the risk for preferential flow, surface runoff, flooding,and soil erosion. The molarity of ethanol droplet (MED) test is widely used for quantifying the severity of water repellency in soils that show reduced wettability and is assumed to be independent of soil particle size. The minimum ethanol concentration at which droplet penetration occurs within a short time (≀10 s) provides an estimate of the initial advancing contact angle at which spontaneous wetting is expected. In this study, we test the assumption of particle size independence using a simple model of soil, represented by layers of small (0.2–2 mm) diameter beads that predict the effect of changing bead radius in the top layer on capillary driven imbibition. Experimental results using a three-layer bead system show broad agreement with the model and demonstrate a dependence of the MED test on particle size. The results show that the critical initial advancing contact angle for penetration can be considerably less than 90° and varies with particle size, demonstrating that a key assumption currently used in the MED testing of soil is not necessarily valid

    OntoMathPROOntoMath^{PRO} Ontology: A Linked Data Hub for Mathematics

    Full text link
    In this paper, we present an ontology of mathematical knowledge concepts that covers a wide range of the fields of mathematics and introduces a balanced representation between comprehensive and sensible models. We demonstrate the applications of this representation in information extraction, semantic search, and education. We argue that the ontology can be a core of future integration of math-aware data sets in the Web of Data and, therefore, provide mappings onto relevant datasets, such as DBpedia and ScienceWISE.Comment: 15 pages, 6 images, 1 table, Knowledge Engineering and the Semantic Web - 5th International Conferenc
    • 

    corecore