73 research outputs found

    Thermal Evolution of the Proton Irradiated Structure in Tungsten–5 wt% Tantalum

    Get PDF
    We have monitored the thermal evolution of the proton irradiated structure of W–5 wt% Ta alloy by in-situ annealing in a transmission electron microscope at fusion reactor temperatures of 500–1300 °C. The interstitial-type a/2 dislocation loops emit self-interstitial atoms and glide to the free sample surface during the early stages of annealing. The resultant vacancy excess in the matrix originates vacancy-type a/2 dislocation loops that grow by loop and vacancy absorption in the temperature range of 600–900 °C. Voids form at 1000 °C, by either vacancy absorption or loop collapse, and grow progressively up to 1300 °C. Tantalum delays void formation by a vacancy-solute trapping mechanism

    A taxonomy of epithelial human cancer and their metastases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray technology has allowed to molecularly characterize many different cancer sites. This technology has the potential to individualize therapy and to discover new drug targets. However, due to technological differences and issues in standardized sample collection no study has evaluated the molecular profile of epithelial human cancer in a large number of samples and tissues. Additionally, it has not yet been extensively investigated whether metastases resemble their tissue of origin or tissue of destination.</p> <p>Methods</p> <p>We studied the expression profiles of a series of 1566 primary and 178 metastases by unsupervised hierarchical clustering. The clustering profile was subsequently investigated and correlated with clinico-pathological data. Statistical enrichment of clinico-pathological annotations of groups of samples was investigated using Fisher exact test. Gene set enrichment analysis (GSEA) and DAVID functional enrichment analysis were used to investigate the molecular pathways. Kaplan-Meier survival analysis and log-rank tests were used to investigate prognostic significance of gene signatures.</p> <p>Results</p> <p>Large clusters corresponding to breast, gastrointestinal, ovarian and kidney primary tissues emerged from the data. Chromophobe renal cell carcinoma clustered together with follicular differentiated thyroid carcinoma, which supports recent morphological descriptions of thyroid follicular carcinoma-like tumors in the kidney and suggests that they represent a subtype of chromophobe carcinoma. We also found an expression signature identifying primary tumors of squamous cell histology in multiple tissues. Next, a subset of ovarian tumors enriched with endometrioid histology clustered together with endometrium tumors, confirming that they share their etiopathogenesis, which strongly differs from serous ovarian tumors. In addition, the clustering of colon and breast tumors correlated with clinico-pathological characteristics. Moreover, a signature was developed based on our unsupervised clustering of breast tumors and this was predictive for disease-specific survival in three independent studies. Next, the metastases from ovarian, breast, lung and vulva cluster with their tissue of origin while metastases from colon showed a bimodal distribution. A significant part clusters with tissue of origin while the remaining tumors cluster with the tissue of destination.</p> <p>Conclusion</p> <p>Our molecular taxonomy of epithelial human cancer indicates surprising correlations over tissues. This may have a significant impact on the classification of many cancer sites and may guide pathologists, both in research and daily practice. Moreover, these results based on unsupervised analysis yielded a signature predictive of clinical outcome in breast cancer. Additionally, we hypothesize that metastases from gastrointestinal origin either remember their tissue of origin or adapt to the tissue of destination. More specifically, colon metastases in the liver show strong evidence for such a bimodal tissue specific profile.</p

    What Do We Know About Neuropsychological Aspects Of Schizophrenia?

    Get PDF
    Application of a neuropsychological perspective to the study of schizophrenia has established a number of important facts about this disorder. Some of the key findings from the existing literature are that, while neurocognitive impairment is present in most, if not all, persons with schizophrenia, there is both substantial interpatient heterogeneity and remarkable within-patient stability of cognitive function over the long-term course of the illness. Such findings have contributed to the firm establishment of neurobiologic models of schizophrenia, and thereby help to reduce the social stigma that was sometimes associated with purely psychogenic models popular during parts of the 20th century. Neuropsychological studies in recent decades have established the primacy of cognitive functions over psychopathologic symptoms as determinants of functional capacity and independence in everyday functioning. Although the cognitive benefits of both conventional and even second generation antipsychotic medications appear marginal at best, recognition of the primacy of cognitive deficits as determinants of functional disability in schizophrenia has catalyzed recent efforts to develop targeted treatments for the cognitive deficits of this disorder. Despite these accomplishments, however, some issues remain to be resolved. Efforts to firmly establish the specific neurocognitive/neuropathologic systems responsible for schizophrenia remain elusive, as do efforts to definitively demonstrate the specific cognitive deficits underlying specific forms of functional impairment. Further progress may be fostered by recent initiatives to integrate neuropsychological studies with experimental neuroscience, perhaps leading to measures of deficits in cognitive processes more clearly associated with specific, identifiable brain systems

    Mg Segregation at Coherent and Semi-Coherent Al/Al3Sc Interfaces

    No full text

    The effect of zirconium on the omega phase in Ti-24Nb-[0–8]Zr (at.%) alloys

    No full text
    Ti-Nb based β-Ti alloys are a promising new class of superelastic, shape-memory, and low-modulus materials for a wide range of applications. A critical phase in β-Ti alloys is the ω phase, which greatly affects the mechanical properties and superelastic/shape-memory behaviour of these materials. Zirconium, an important alloying constituent in many β-Ti alloys, is generally regarded as an ω suppressant, but the body of evidence supporting this view is unconvincing and includes a number of conflicting reports. In this article, the role of Zr on ω phase formation in Ti-Nb alloys is clarified using X-ray diffraction, transmission electron microscopy, and atom-probe tomography. Zirconium additions were found to suppress the formation of athermal ω phase upon quenching from high temperature. However, up to 8 at.% Zr additions to a Ti-24 at.% Nb alloy had little effect on the formation of isothermal ω phase following aging at 300 °C after 100 hours. Furthermore, the isothermal ω precipitates were found to be strongly depleted in Nb but only weakly depleted in Zr. These results challenge the belief that Zr suppresses isothermal ω formation in β-Ti alloys, a result that is likely to be applicable beyond the Ti-Nb system considered here and information that can be used to assist in the design of future β-Ti alloys

    Microstructural evolution in a superelastic metastable beta-Ti alloy

    No full text
    The microstructural evolution of Ti-24Nb-4Zr-8Sn wt.% during low-temperature ageing is examined by atom-probe tomography (APT) and X-ray diffraction (XRD). This ageing is deleterious to the desirable mechanical properties, such as ultra-low elastic modulus and superelasticity. Initially, the cold-rolled alloy possesses a martensitic α 00-precipitate/β- matrix microstructure. On ageing, Ti-rich/solute-lean precipitates grow in linear arrangements, which are likely associated with dislocations. Additionally, the composition and number density of Nb-rich domains (which are associated with superelasticity) are quantified for the first time. The domains are unstable, but decrease in number density during ageing, causing the deterioration in mechanical properties

    Isothermal omega formation and evolution in the Beta-Ti alloy Ti-5Al-5Mo-5V-3Cr

    No full text
    phase of Ti-5Al-5Mo-5V-3Cr wt.% is formed within a heat treatment at and identified by atom probe tomography as Ti-rich/solute lean precipitates. The composition and size remain essentially constant during ageing, although the volume fraction increases to 9.5% after ageing for 8 h. This is consistent with an ongoing transformation process of athermal to isothermal . The / interface becomes enriched with oxygen. This may be of significance as oxygen strongly stabilizes the phase, and the / interface has previously been suggested as the nucleation site for subsequent formation

    Lattice strain evolution and load partitioning during creep of a Ni-base superalloy single crystal with rafted gamma prime microstructure

    No full text
    In-situ neutron diffraction measurements were performed on monocrystalline samples of the Ni-based superalloy CMSX-4 during N-type γ′ raft formation under the tensile creep conditions of 1150 °C/100 MPa, and subsequently on a rafted sample under the low temperature/high stress creep conditions of 715 °C/825 MPa. During 1150 °C/100 MPa creep, the γ′ volume fraction decreased from ∼70% to ∼50%, the lattice parameter misfit was partly relieved, and the load was transferred from the creeping γ matrix to the γ′ precipitates. On cooling back to room temperature, a fine distribution of γ′ precipitates formed in the γ channels, and these precipitates were present in the 715 °C/825 MPa creep regime. Under low temperature/high stress creep, the alloy with rafted γ′ microstructure exhibited superior creep strength to the cuboidal γ′ microstructure produced following a standard heat-treatment. A lengthy creep incubation period was observed, believed to be associated with {111} dislocations hindering propagation of {111} dislocations. Following the creep incubation period, extensive macroscopic creep strain accumulated during primary creep as the γ phase yielded. Finally, the diffraction data suggest a loss of precipitate/matrix coherency in the (0k0) interfaces as creep strain accumulated
    corecore