102 research outputs found

    Development of proton beam irradiation system for the NA65/DsTau experiment

    Full text link
    Tau neutrino is the least studied lepton of the Standard Model (SM). The NA65/DsTau experiment targets to investigate DsD_s, the parent particle of the ντ\nu_\tau, using the nuclear emulsion-based detector and to decrease the systematic uncertainty of ντ\nu_\tau flux prediction from over 50% to 10% for future beam dump experiments. In the experiment, the emulsion detectors are exposed to the CERN SPS 400 GeV proton beam. To provide optimal conditions for the reconstruction of interactions, the protons are required to be uniformly distributed over the detector's surface with an average density of 105 cm210^5~\rm{cm^{-2}} and the fluctuation of less than 10%. To address this issue, we developed a new proton irradiation system called the target mover. The new target mover provided irradiation with a proton density of 0.98 cm20.98~\rm{cm^{-2}} and the density fluctuation of 2.0±0.32.0\pm 0.3% in the DsTau 2021 run.Comment: 9 pages, 16 figure

    DsTau: Study of tau neutrino production with 400 GeV protons from the CERN-SPS

    Full text link
    In the DsTau experiment at the CERN SPS, an independent and direct way to measure tau neutrino production following high energy proton interactions was proposed. As the main source of tau neutrinos is a decay of Ds mesons, produced in proton-nucleus interactions, the project aims at measuring a differential cross section of this reaction. The experimental method is based on a use of high resolution emulsion detectors for effective registration of events with short lived particle decays. Here we present the motivation of the study, details of the experimental technique, and the first results of the analysis of the data collected during test runs, which prove feasibility of the full scale study of the process in future

    First Direct Observation of Collider Neutrinos with FASER at the LHC

    Get PDF
    We report the first direct observation of neutrino interactions at a particle collider experiment. Neutrino candidate events are identified in a 13.6 TeV center-of-mass energy pppp collision data set of 35.4 fb1{}^{-1} using the active electronic components of the FASER detector at the Large Hadron Collider. The candidates are required to have a track propagating through the entire length of the FASER detector and be consistent with a muon neutrino charged-current interaction. We infer 15313+12153^{+12}_{-13} neutrino interactions with a significance of 16 standard deviations above the background-only hypothesis. These events are consistent with the characteristics expected from neutrino interactions in terms of secondary particle production and spatial distribution, and they imply the observation of both neutrinos and anti-neutrinos with an incident neutrino energy of significantly above 200 GeV.Comment: Submitted to PRL on March 24 202

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    New results from the OPERA experiment

    No full text
    The OPERA experiment reached its main goal by proving the appearance of νη in the CNGS νμ beam. A total sample of 5 candidates fulfilling the analysis defined in the proposal was detected with a S/B ratio of about ten allowing to reject the null hypothesis at 5.1σ. The search has been extended to γη-like interactions failing the kinematical analysis defined in the experiment proposal to obtain a statistically enhanced, lower purity, signal sample. Based on the enlarged data sample the estimation of Δm223 in appearance mode is presented. The search for νe interactions has been extended over the full data set with a more than twofold increase in statistics with respect to published data. The analysis of the νμ μ νe channel is updated and the implications of the electron neutrino sample in the framework of the 3+1 sterile model is discussed. An analysis of νμ μ νπ interactions in the framework of the sterile neutrino model has also been performed. Moreover the results of the analysis of the annual modulation of the cosmic muon rate will be presented

    Status and Updated Results of the OPERA Experimental Search for νμντ \nu_{\mu} \to \nu_\tau Oscillations.

    No full text
    The OPERA detector in the underground Gran Sasso Laboratory (LNGS) has been designed to detect muon-neutrino to tau-neutrino oscillations in direct appearance mode. The hybrid apparatus consists of an emulsion/lead target and of electronic detectors. Data taking using the CNGS muon-neutrino beam from CERN took place from 2008 to 2012. The various steps of the analysis are described, from the localization of the target element where a neutrino interaction occurred up to the identification in the emulsion films of the decay vertex of a short lived particle. The detailed simulation of the different steps allows a precise evaluation of the signal efficiency and of the associated backgrounds. The significance of the latest tau-neutrino appearance results is discussed
    corecore