5 research outputs found

    Predictive model for Brazilian presidential election based on analysis of social media

    No full text
    The prediction of presidential election outcome is key point of interest for politicians, electors and sponsoring companies. The 2018 Brazilian election presented a scenario with many uncertainties increasing prediction challenge. The utilization of social media as the promotion tools is another new scenario for both election and also prediction. In this paper, we present a Bayesian forecasting model based on the data from public opinion polls to predict the votes of undecided voters, about a third of the population. The migration of votes among candidates during the electoral period was also analyzed. By using the data from social media in the decision-making process, the proposed model and application show the capability to estimate the voting numbers of the main candidates with better accuracy than public opinion polls

    BERT-Based Sentiment Analysis Using Distillation

    No full text
    In this paper, we present our experiments with BERT (Bidirectional Encoder Representations from Transformers) models in the task of sentiment analysis, which aims to predict the sentiment polarity for the given text. We trained an ensemble of BERT models from a large self-collected movie reviews dataset and distilled the knowledge into a single production model. Moreover, we proposed an improved BERT’s pooling layer architecture, which outperforms standard classification layer while enables per-token sentiment predictions. We demonstrate our improvements on a publicly available dataset with Czech movie reviews

    360 degree view of cross-domain opinion classification: a survey

    No full text
    corecore