5,618 research outputs found

    Exact Hybrid Covariance Thresholding for Joint Graphical Lasso

    Full text link
    This paper considers the problem of estimating multiple related Gaussian graphical models from a pp-dimensional dataset consisting of different classes. Our work is based upon the formulation of this problem as group graphical lasso. This paper proposes a novel hybrid covariance thresholding algorithm that can effectively identify zero entries in the precision matrices and split a large joint graphical lasso problem into small subproblems. Our hybrid covariance thresholding method is superior to existing uniform thresholding methods in that our method can split the precision matrix of each individual class using different partition schemes and thus split group graphical lasso into much smaller subproblems, each of which can be solved very fast. In addition, this paper establishes necessary and sufficient conditions for our hybrid covariance thresholding algorithm. The superior performance of our thresholding method is thoroughly analyzed and illustrated by a few experiments on simulated data and real gene expression data

    Mechanistic Modeling of Microtopographic Impacts on CO2 and CH4 Fluxes in an Alaskan Tundra Ecosystem Using the CLM-Microbe Model

    Get PDF
    Spatial heterogeneities in soil hydrology have been confirmed as a key control on CO2 and CH4 fluxes in the Arctic tundra ecosystem. In this study, we applied a mechanistic ecosystem model, CLM-Microbe, to examine the microtopographic impacts on CO2 and CH4 fluxes across seven landscape types in Utqiaġvik, Alaska: trough, low-centered polygon (LCP) center, LCP transition, LCP rim, high-centered polygon (HCP) center, HCP transition, and HCP rim. We first validated the CLM-Microbe model against static-chamber measured CO2 and CH4 fluxes in 2013 for three landscape types: trough, LCP center, and LCP rim. Model application showed that low-elevation and thus wetter landscape types (i.e., trough, transitions, and LCP center) had larger CH4 emissions rates with greater seasonal variations than high-elevation and drier landscape types (rims and HCP center). Sensitivity analysis indicated that substrate availability for methanogenesis (acetate, CO2 + H2) is the most important factor determining CH4 emission, and vegetation physiological properties largely affect the net ecosystem carbon exchange and ecosystem respiration in Arctic tundra ecosystems. Modeled CH4 emissions for different microtopographic features were upscaled to the eddy covariance (EC) domain with an area-weighted approach before validation against EC-measured CH4 fluxes. The model underestimated the EC-measured CH4 flux by 20% and 25% at daily and hourly time steps, suggesting the importance of the time step in reporting CH4 flux. The strong microtopographic impacts on CO2 and CH4 fluxes call for a model-data integration framework for better understanding and predicting carbon flux in the highly heterogeneous Arctic landscape

    Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique

    Get PDF
    Terahertz technologies recently emerged as outstanding candidates for a variety of applications in such sectors as security, biomedical, pharmaceutical, aero spatial, etc. Imaging the terahertz field, however, still remains a challenge, particularly when sub-wavelength resolutions are involved. Here we demonstrate an all-optical technique for the terahertz near-field imaging directly at the source plane. A thin layer (<100 nm-thickness) of photo carriers is induced on the surface of the terahertz generation crystal, which acts as an all-optical, virtual blade for terahertz near-field imaging via a knife-edge technique. Remarkably, and in spite of the fact that the proposed approach does not require any mechanical probe, such as tips or apertures, we are able to demonstrate the imaging of a terahertz source with deeply sub-wavelength features (<30 μm) directly in its emission plane

    Different mechanisms of cis-9,trans-11- and trans-10,cis-12- conjugated linoleic acid affecting lipid metabolism in 3T3-L1 cells

    Get PDF
    Conjugated linoleic acid (CLA) has been shown to reduce body fat mass in various experimental animals. It is valuable to identify its influence on enzymes involved in energy expenditure, apoptosis, fatty acid oxidation and lipolysis. We investigated isomer-specific effects of high dose, long treatment of CLA (75.4 Μmol/L, 8 days) on protein and gene expression of these enzymes in cultured 3T3-L1 cells. Proteomics identified significant up- or down-regulation of 52 proteins by either CLA isomer. Protein and gene expression of uncoupling protein (UCP) 1, UCP3, perilipin and peroxisome proliferator-activated receptor (PPAR) α increased whereas UCP2 reduced for both CLA isomers. And eight-day treatment of trans-10,. cis-12 CLA, but not cis-9,. trans-11 CLA, significantly up-regulated protein and mRNA levels of PKA (P<05), CPT-1 and TNF-α (P<01). Compared to protein expression, both isomers did not significantly influence the mRNA expression of HSL, ATGL, ACO and leptin. In conclusion, high-dose, long treatment of cis-9,. trans-11 CLA did not promote apoptosis, fatty acid oxidation and lipolysis in adipocytes, but may induce an increase in energy expenditure. trans-10,. cis-12 CLA exhibited greater influence on lipid metabolism, stimulated adipocyte energy expenditure, apoptosis and fatty acid oxidation, but its effect on lipolysis was not obvious. © 2010 Elsevier Inc.postprin

    Coordinated Fc-effector and neutralization functions in HIV-infected children define a window of opportunity for HIV vaccination

    Get PDF
    OBJECTIVES: Antibody function has been extensively studied in HIV-infected adults but is relatively understudied in children. Emerging data suggests enhanced development of broadly neutralizing antibodies (bNAbs) in children but Fc effector functions in this group are less well defined. Here, we profiled overall antibody function in HIV-infected children. DESIGN: Plasma samples from a cross-sectional study of 50 antiretroviral therapy-naive children (aged 1-11 years) vertically infected with HIV-1 clade A were screened for HIV-specific binding antibody levels and neutralizing and Fc-mediated functions. METHODS: Neutralization breadth was determined against a globally representative panel of 12 viruses. HIV-specific antibody levels were determined using a multiplex assay. Fc-mediated antibody functions measured were antibody-dependent: cellular phagocytosis (ADCP); neutrophil phagocytosis (ADNP); complement deposition (ADCD) and natural killer function (ADNK). RESULTS: All children had HIV gp120-specific antibodies, largely of the IgG1 subtype. Fifty-four percent of the children exhibited more than 50% neutralization breadth, with older children showing significantly broader neutralization activity. Apart from ADCC, observed only in 16% children, other Fc-mediated functions were common (>58% children). Neutralization breadth correlated with Fc-mediated functions suggesting shared determinants of enhanced antibody function exist. CONCLUSIONS: These results are consistent with previous observations that children may develop high levels of neutralization breadth. Furthermore, the striking association between neutralization breadth and Fc effector function suggests that HIV vaccination in children could yield multifunctional antibodies. Paediatric populations may therefore provide an ideal window of opportunity for HIV vaccination strategies

    Observation of An Evolving Magnetic Flux Rope Prior To and During A Solar Eruption

    Full text link
    Explosive energy release is a common phenomenon occurring in magnetized plasma systems ranging from laboratories, Earth's magnetosphere, the solar corona and astrophysical environments. Its physical explanation is usually attributed to magnetic reconnection in a thin current sheet. Here we report the important role of magnetic flux rope structure, a volumetric current channel, in producing explosive events. The flux rope is observed as a hot channel prior to and during a solar eruption from the Atmospheric Imaging Assembly (AIA) telescope on board the Solar Dynamic Observatory (SDO). It initially appears as a twisted and writhed sigmoidal structure with a temperature as high as 10 MK and then transforms toward a semi-circular shape during a slow rise phase, which is followed by fast acceleration and onset of a flare. The observations suggest that the instability of the magnetic flux rope trigger the eruption, thus making a major addition to the traditional magnetic-reconnection paradigm.Comment: 13 pages, 3 figure

    Experimental demonstration of a BDCZ quantum repeater node

    Full text link
    Quantum communication is a method that offers efficient and secure ways for the exchange of information in a network. Large-scale quantum communication (of the order of 100 km) has been achieved; however, serious problems occur beyond this distance scale, mainly due to inevitable photon loss in the transmission channel. Quantum communication eventually fails when the probability of a dark count in the photon detectors becomes comparable to the probability that a photon is correctly detected. To overcome this problem, Briegel, D\"{u}r, Cirac and Zoller (BDCZ) introduced the concept of quantum repeaters, combining entanglement swapping and quantum memory to efficiently extend the achievable distances. Although entanglement swapping has been experimentally demonstrated, the implementation of BDCZ quantum repeaters has proved challenging owing to the difficulty of integrating a quantum memory. Here we realize entanglement swapping with storage and retrieval of light, a building block of the BDCZ quantum repeater. We follow a scheme that incorporates the strategy of BDCZ with atomic quantum memories. Two atomic ensembles, each originally entangled with a single emitted photon, are projected into an entangled state by performing a joint Bell state measurement on the two single photons after they have passed through a 300-m fibre-based communication channel. The entanglement is stored in the atomic ensembles and later verified by converting the atomic excitations into photons. Our method is intrinsically phase insensitive and establishes the essential element needed to realize quantum repeaters with stationary atomic qubits as quantum memories and flying photonic qubits as quantum messengers.Comment: 5 pages, 4 figure

    Memory-built-in quantum teleportation with photonic and atomic qubits

    Full text link
    The combination of quantum teleportation and quantum memory of photonic qubits is essential for future implementations of large-scale quantum communication and measurement-based quantum computation. Both steps have been achieved separately in many proof-of-principle experiments, but the demonstration of memory-built-in teleportation of photonic qubits remains an experimental challenge. Here, we demonstrate teleportation between photonic (flying) and atomic (stationary) qubits. In our experiment, an unknown polarization state of a single photon is teleported over 7 m onto a remote atomic qubit that also serves as a quantum memory. The teleported state can be stored and successfully read out for up to 8 micro-second. Besides being of fundamental interest, teleportation between photonic and atomic qubits with the direct inclusion of a readable quantum memory represents a step towards an efficient and scalable quantum network.Comment: 19 pages 3 figures 1 tabl

    On the selection and design of proteins and peptide derivatives for the production of photoluminescent, red-emitting gold quantum clusters

    Get PDF
    Novel pathways of the synthesis of photoluminescent gold quantum clusters (AuQCs) using biomolecules as reactants provide biocompatible products for biological imaging techniques. In order to rationalize the rules for the preparation of red-emitting AuQCs in aqueous phase using proteins or peptides, the role of different organic structural units was investigated. Three systems were studied: proteins, peptides, and amino acid mixtures, respectively. We have found that cysteine and tyrosine are indispensable residues. The SH/S-S ratio in a single molecule is not a critical factor in the synthesis, but on the other hand, the stoichiometry of cysteine residues and the gold precursor is crucial. These observations indicate the importance of proper chemical behavior of all species in a wide size range extending from the atomic distances (in the AuI-S semi ring) to nanometer distances covering the larger sizes of proteins assuring the hierarchical structure of the whole self-assembled system

    Worldwide variation in the relative importance of hepatitis B and hepatitis C viruses in hepatocellular carcinoma: a systematic review

    Get PDF
    We combined information published worldwide on the seroprevalence of hepatitis B surface antigen (HbsAg) and antibodies against hepatitis C virus (anti-HCV) in 27 881 hepatocellular carcinomas (HCCs) from 90 studies. A predominance of HBsAg was found in HCCs from most Asian, African and Latin American countries, but anti-HCV predominated in Japan, Pakistan, Mongolia and Egypt. Anti-HCV was found more often than HBsAg in Europe and the United States
    corecore