4,207 research outputs found

    Exposure to Secondhand Smoke and Arrhythmogenic Cardiac Alternans in a Mouse Model.

    Get PDF
    BackgroundEpidemiological evidence suggests that a majority of deaths attributed to secondhand smoke (SHS) exposure are cardiovascular related. However, to our knowledge, the impact of SHS on cardiac electrophysiology, [Formula: see text] handling, and arrhythmia risk has not been studied.ObjectivesThe purpose of this study was to investigate the impact of an environmentally relevant concentration of SHS on cardiac electrophysiology and indicators of arrhythmia.MethodsMale C57BL/6 mice were exposed to SHS [total suspended particles (THS): [Formula: see text], nicotine: [Formula: see text], carbon monoxide: [Formula: see text], or filtered air (FA) for 4, 8, or 12 wk ([Formula: see text]]. Hearts were excised and Langendorff perfused for dual optical mapping with voltage- and [Formula: see text]-sensitive dyes.ResultsAt slow pacing rates, SHS exposure did not alter baseline electrophysiological parameters. With increasing pacing frequency, action potential duration (APD), and intracellular [Formula: see text] alternans magnitude progressively increased in all groups. At 4 and 8 wk, there were no statistical differences in APD or [Formula: see text] alternans magnitude between SHS and FA groups. At 12 wk, both APD and [Formula: see text] alternans magnitude were significantly increased in the SHS compared to FA group ([Formula: see text]). SHS exposure did not impact the time constant of [Formula: see text] transient decay ([Formula: see text]) at any exposure time point. At 12 wk exposure, the recovery of [Formula: see text] transient amplitude with premature stimuli was slightly (but nonsignificantly) delayed in SHS compared to FA hearts, suggesting that [Formula: see text] release via ryanodine receptors may be impaired.ConclusionsIn male mice, chronic exposure to SHS at levels relevant to social situations in humans increased their susceptibility to cardiac alternans, a known precursor to ventricular arrhythmia. https://doi.org/10.1289/EHP3664

    Hepatitis B virus core and core-related antigen quantitation in Chinese patients with chronic genotype B and C hepatitis B virus infection

    Get PDF
    The definitive version is available at www.blackwell-synergy.com.ArticleJOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY. 20(11): 1726-1730 (2005)journal articl

    Hepatitis B virus core and core-related antigen quantitation in Chinese patients with chronic genotype B and C hepatitis B virus infection

    Get PDF
    The definitive version is available at www.blackwell-synergy.com.ArticleJOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY. 20(11): 1726-1730 (2005)journal articl

    Tunable magnetic exchange interactions in manganese-doped inverted core/shell ZnSe/CdSe nanocrystals

    Full text link
    Magnetic doping of semiconductor nanostructures is actively pursued for applications in magnetic memory and spin-based electronics. Central to these efforts is a drive to control the interaction strength between carriers (electrons and holes) and the embedded magnetic atoms. In this respect, colloidal nanocrystal heterostructures provide great flexibility via growth-controlled `engineering' of electron and hole wavefunctions within individual nanocrystals. Here we demonstrate a widely tunable magnetic sp-d exchange interaction between electron-hole excitations (excitons) and paramagnetic manganese ions using `inverted' core-shell nanocrystals composed of Mn-doped ZnSe cores overcoated with undoped shells of narrower-gap CdSe. Magnetic circular dichroism studies reveal giant Zeeman spin splittings of the band-edge exciton that, surprisingly, are tunable in both magnitude and sign. Effective exciton g-factors are controllably tuned from -200 to +30 solely by increasing the CdSe shell thickness, demonstrating that strong quantum confinement and wavefunction engineering in heterostructured nanocrystal materials can be utilized to manipulate carrier-Mn wavefunction overlap and the sp-d exchange parameters themselves.Comment: To appear in Nature Materials; 18 pages, 4 figures + Supp. Inf

    Social interactions through the eyes of macaques and humans

    Get PDF
    Group-living primates frequently interact with each other to maintain social bonds as well as to compete for valuable resources. Observing such social interactions between group members provides individuals with essential information (e.g. on the fighting ability or altruistic attitude of group companions) to guide their social tactics and choice of social partners. This process requires individuals to selectively attend to the most informative content within a social scene. It is unclear how non-human primates allocate attention to social interactions in different contexts, and whether they share similar patterns of social attention to humans. Here we compared the gaze behaviour of rhesus macaques and humans when free-viewing the same set of naturalistic images. The images contained positive or negative social interactions between two conspecifics of different phylogenetic distance from the observer; i.e. affiliation or aggression exchanged by two humans, rhesus macaques, Barbary macaques, baboons or lions. Monkeys directed a variable amount of gaze at the two conspecific individuals in the images according to their roles in the interaction (i.e. giver or receiver of affiliation/aggression). Their gaze distribution to non-conspecific individuals was systematically varied according to the viewed species and the nature of interactions, suggesting a contribution of both prior experience and innate bias in guiding social attention. Furthermore, the monkeys’ gaze behavior was qualitatively similar to that of humans, especially when viewing negative interactions. Detailed analysis revealed that both species directed more gaze at the face than the body region when inspecting individuals, and attended more to the body region in negative than in positive social interactions. Our study suggests that monkeys and humans share a similar pattern of role-sensitive, species- and context-dependent social attention, implying a homologous cognitive mechanism of social attention between rhesus macaques and humans

    A Case Study of Crowdsourcing Imagery Coding in Natural Disasters

    No full text
    Crowdsourcing and open licensing allow more people to participate in research and humanitarian activities. Open data, such as geographic information shared through OpenStreetMap and image datasets from disasters, can be useful for disaster response and recovery work. This chapter shares a real-world case study of humanitarian-driven imagery analysis, using open-source crowdsourcing technology. Shared philosophies in open technologies and digital humanities, including remixing and the wisdom of the crowd, are reflected in this case study.This research was funded through the European Commission FP7-ICT project: Citizen Cyberlab: Technology Enhanced Creative Learning in the field of Citizen Cyberscience

    MUC1-C Oncoprotein Regulates Glycolysis and Pyruvate Kinase m2 Activity in Cancer Cells

    Get PDF
    Aerobic glycolysis in cancer cells is regulated by multiple effectors that include Akt and pyruvate kinase M2 (PKM2). Mucin 1 (MUC1) is a heterodimeric glycoprotein that is aberrantly overexpressed by human breast and other carcinomas. Here we show that transformation of rat fibroblasts by the oncogenic MUC1-C subunit is associated with Akt-mediated increases in glucose uptake and lactate production, consistent with the stimulation of glycolysis. The results also demonstrate that the MUC1-C cytoplasmic domain binds directly to PKM2 at the B- and C-domains. Interaction between the MUC1-C cytoplasmic domain Cys-3 and the PKM2 C-domain Cys-474 was found to stimulate PKM2 activity. Conversely, epidermal growth factor receptor (EGFR)-mediated phosphorylation of the MUC1-C cytoplasmic domain on Tyr-46 conferred binding to PKM2 Lys-433 and inhibited PKM2 activity. In human breast cancer cells, silencing MUC1-C was associated with decreases in glucose uptake and lactate production, confirming involvement of MUC1-C in the regulation of glycolysis. In addition, EGFR-mediated phosphorylation of MUC1-C in breast cancer cells was associated with decreases in PKM2 activity. These findings indicate that the MUC1-C subunit regulates glycolysis and that this response is conferred in part by PKM2. Thus, the overexpression of MUC1-C oncoprotein in diverse human carcinomas could be of importance to the Warburg effect of aerobic glycolysis
    • …
    corecore