2,905 research outputs found

    Untangling the complex food webs of tropical rainforest streams.

    Get PDF
    Food webs depict the tangled web of trophic interactions associated with the functioning of an ecosystem. Understanding the mechanisms providing stability to these food webs is therefore vital for conservation efforts and the management of natural systems. Here, we first characterised a tropical stream meta-food web and five individual food webs using a Bayesian Hierarchical approach unifying three sources of information (gut content analysis, literature compilation and stable isotope data). With data on population-level biomass and individually measured body mass, we applied a bioenergetic model and assessed food web stability using a Lotka-Volterra system of equations. We then assessed the resilience of the system to individual species extinctions using simulations and investigated the network patterns associated with systems with higher stability. The model resulted in a stable meta-food web with 307 links among the 61 components. At the regional scale, 70% of the total energy flow occurred through a set of 10 taxa with large variation in body masses. The remaining 30% of total energy flow relied on 48 different taxa, supporting a significant dependency on a diverse community. The meta-food web was stable against individual species extinctions, with a higher resilience in food webs harbouring omnivorous fish species able to connect multiple food web compartments via weak, non-specialised interactions. Moreover, these fish species contributed largely to the spatial variation among individual food webs, suggesting that these species could operate as mobile predators connecting different streams and stabilising variability at the regional scale. Our results outline two key mechanisms of food web stability operating in tropical streams: (i) the diversity of species and body masses buffering against random and size-dependent disturbances and (ii) high regional diversity and weak omnivorous interactions of predators buffering against local stochastic variation in species composition. These mechanisms rely on high local and regional biodiversity in tropical streams, which is known to be strongly affected by human impacts. Therefore, an urgent challenge is to understand how the ongoing systematic loss of diversity jeopardises the stability of stream food webs in human-impacted landscapes

    Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose condensate

    Full text link
    A central goal in condensed matter and modern atomic physics is the exploration of many-body quantum phases and the universal characteristics of quantum phase transitions in so far as they differ from those established for thermal phase transitions. Compared with condensed-matter systems, atomic gases are more precisely constructed and also provide the unique opportunity to explore quantum dynamics far from equilibrium. Here we identify a second-order quantum phase transition in a gaseous spinor Bose-Einstein condensate, a quantum fluid in which superfluidity and magnetism, both associated with symmetry breaking, are simultaneously realized. 87^{87}Rb spinor condensates were rapidly quenched across this transition to a ferromagnetic state and probed using in-situ magnetization imaging to observe spontaneous symmetry breaking through the formation of spin textures, ferromagnetic domains and domain walls. The observation of topological defects produced by this symmetry breaking, identified as polar-core spin-vortices containing non-zero spin current but no net mass current, represents the first phase-sensitive in-situ detection of vortices in a gaseous superfluid.Comment: 6 pages, 4 figure

    Early menarche and childhood adversities in a nationally representative sample

    Get PDF
    Background: Epidemiological evidence suggests that early menarche, defined as onset of menses at age 11 or earlier, has increased in prevalence in recent birth cohorts and is associated with multiple poor medical and mental health outcomes in adulthood. There is evidence that childhood adversities occurring prior to menarche contribute to early menarche.Methods: Data collected in face-to-face interviews with a nationally representative sample of women age 18 and over (N = 3288), as part of the National Comorbidity Survey-Replication, were analyzed. Associations between pre-menarchal childhood adversities and menarche at age 11 or earlier were estimated in discrete time survival models with statistical adjustment for age at interview, ethnicity, and body mass index. Adversities investigated included physical abuse, sexual abuse, neglect, biological father absence from the home, other parent loss, parent mental illness, parent substance abuse, parent criminality, inter-parental violence, serious physical illness in childhood, and family economic adversity.Results: Mean age at menarche varied across decadal birth cohorts (χ2(4) = 21.41, p < .001) ranging from a high of 12.9 years in the oldest cohort (age 59 or older at the time of interview) to a low of 12.4 in the second youngest cohort (age 28-37). Childhood adversities were also more common in younger than older cohorts. Of the 11 childhood adversities, 5 were associated with menarche at age 11 or earlier, with OR of 1.3 or greater. Each of these five adversities is associated with a 26% increase in the odds of early menarche (OR = 1.26, 95% CI 1.14-1.39). The relationship between childhood sexual abuse and early menarche was sustained after adjustment for co-occurring adversities. (OR = 1.77, 95% CI 1.21-2.6).Conclusions: Evidence from this study is consistent with hypothesized physiological effects of early childhood family environment on endocrine development. Childhood sexual abuse is the adversity most strongly associated with early menarche. However, because of the complex way that childhood adversities cluster within families, the more generalized influence of highly dysfunctional family environments cannot be ruled out

    Long-Term Results and Prognostic Factors of Gastric Cancer Patients with Microscopic Peritoneal Carcinomatosis

    Get PDF
    BACKGROUND: Clinical significance of microscopic peritoneal carcinomatosis remained unclear. The aim of this study was to evaluate the prognostic value of microscopic peritoneal carcinomatosis in gastric cancer. METHODS: From 1996 to 2007, 4426 patients underwent gastrectomy for gastric cancer at Fudan University Shanghai Cancer Center. The clinical and pathological data were reviewed to identify patients with microscopic peritoneal carcinomatosis (group 1). The clinicopathological features and prognosis were examined. Additionally, 242 stage-matched gastric cancer patients without microscopic peritoneal carcinomatosis (group 2) and 118 with macroscopic peritoneal carcinomatosis (group 3) were selected as control groups. RESULTS: Microscopic peritoneal carcinomatosis was found in 121 patients. There were 85 males and 36 females (2.36:1). There was a higher incidence rate of large size tumor (≥5 cm) (P = 0.045), Borrmann IV (P = 0.000), and serosal invasion (P = 0.000) in gastric cancer with microscopic peritoneal carcinomatosis compared with the control group. The 5-year survival rate of gastric cancer with microscopic peritoneal carcinomatosis was 24%, significantly poorer than that of the stage-matched control group but better than that of patients with macroscopic peritoneal carcinomatosis. The independent prognostic factors identified included pathological stage and operative curability. CONCLUSIONS: The presence of microscopic peritoneal carcinomatosis was associated with worse prognosis for gastric cancer, but curative surgery showed potential to improve prognosis

    Extracranial head and neck schwannomas: a study of the nerve of origin

    Get PDF
    Schwannoma is a type of benign nerve sheath tumour arising from the Schwann cell. Because of the close relationship between the tumour and the nerve of origin (NOO), the operation of extracranial head and neck schwannoma may lead to palsy of major nerve. For this reason, an accurate diagnosis of schwannoma with the identification of the NOO is crucial to the management. The aim of this review was to find out the distribution of the NOO and the usefulness of the investigations in the diagnosis of schwannoma. Medical records of the patients who underwent operation of the extracranial head and neck schwannoma in our division were reviewed. Between January 2000 and December 2009, 30 cases of extracranial head and neck schwannoma were operated. Sympathetic trunk (10, 33%) and vagus nerve (6, 20%) were the two most common NOOs. In five (17%) cases, the NOO was not found to be arising from any major nerve. For these 30 patients, 20 received fine needle aspiration cytology (FNAC) and 26 underwent imaging studies (computed tomography or magnetic resonance imaging) before operation. The specificity of FNAC and imaging studies in making the diagnosis of schwannoma was 20 and 38%, respectively. For the patients who had nerve palsies on presentation, their deficits remained after operation. The rate of nerve palsy after tumour excision with division of NOO and intracapsular enucleation was 100 and 67%, respectively. The diagnosis of schwannoma is suggested by clinical features and supported by investigations. Most of the time, the diagnosis can only be confirmed on the histological study of the surgical specimen. Sympathetic trunk and vagus nerve are the two common NOOs. MRI is the investigation of choice in the diagnosis of schwannoma and the identification of NOO

    Implications of sperm banking for health-related quality of life up to 1 year after cancer diagnosis.

    Get PDF
    Sperm banking is recommended for all men diagnosed with cancer where treatment is associated with risk of long-term gonadatoxicity, to offer the opportunity of fatherhood and improved quality of life. However, uptake of sperm banking is lower than expected and little is known about why men refuse. Our aims were to determine: (i) demographic and medical variables associated with decisions about banking and (ii) differences in quality of life between bankers and non-bankers at diagnosis (Time 1 (T1)) and 1 year later (Time 2 (T2))

    Non-PEGylated liposomes for convection-enhanced delivery of topotecan and gadodiamide in malignant glioma: initial experience

    Get PDF
    Convection-enhanced delivery (CED) of highly stable PEGylated liposomes encapsulating chemotherapeutic drugs has previously been effective against malignant glioma xenografts. We have developed a novel, convectable non-PEGylated liposomal formulation that can be used to encapsulate both the topoisomerase I inhibitor topotecan (topoCED™) and paramagnetic gadodiamide (gadoCED™), providing an ideal basis for real-time monitoring of drug distribution. Tissue retention of topoCED following single CED administration was significantly improved relative to free topotecan. At a dose of 10 μg (0.5 mg/ml), topoCED had a half-life in brain of approximately 1 day and increased the area under the concentration–time curve (AUC) by 28-fold over free topotecan (153.8 vs. 5.5 μg day/g). The combination of topoCED and gadoCED was found to co-convect well in both naïve rat brain and malignant glioma xenografts (correlation coefficients 0.97–0.99). In a U87MG cell assay, the 50% inhibitory concentration (IC50) of topoCED was approximately 0.8 μM at 48 and 72 h; its concentration–time curves were similar to free topotecan and unaffected by gadoCED. In a U87MG intracranial rat xenograft model, a two-dose CED regimen of topoCED co-infused with gadoCED greatly increased median overall survival at dose levels of 0.5 mg/ml (29.5 days) and 1.0 mg/ml (33.0 days) vs. control (20.0 days; P < 0.0001 for both comparisons). TopoCED at higher concentrations (1.6 mg/ml) co-infused with gadoCED showed no evidence of histopathological changes attributable to either agent. The positive results of tissue pharmacokinetics, co-convection, cytotoxicity, efficacy, and lack of toxicity of topoCED in a clinically meaningful dose range, combined with an ideal matched-liposome paramagnetic agent, gadoCED, implicates further clinical applications of this therapy in the treatment of malignant glioma

    Knock-in models related to Alzheimer’s disease: synaptic transmission, plaques and the role of microglia

    Get PDF
    Background: Microglia are active modulators of Alzheimer’s disease but their role in relation to amyloid plaques and synaptic changes due to rising amyloid beta is unclear. We add novel findings concerning these relationships and investigate which of our previously reported results from transgenic mice can be validated in knock-in mice, in which overexpression and other artefacts of transgenic technology are avoided. Methods: AppNL-F and AppNL-G-F knock-in mice expressing humanised amyloid beta with mutations in App that cause familial Alzheimer’s disease were compared to wild type mice throughout life. In vitro approaches were used to understand microglial alterations at the genetic and protein levels and synaptic function and plasticity in CA1 hippocampal neurones, each in relationship to both age and stage of amyloid beta pathology. The contribution of microglia to neuronal function was further investigated by ablating microglia with CSF1R inhibitor PLX5622. Results: Both App knock-in lines showed increased glutamate release probability prior to detection of plaques. Consistent with results in transgenic mice, this persisted throughout life in AppNL-F mice but was not evident in AppNL-G-F with sparse plaques. Unlike transgenic mice, loss of spontaneous excitatory activity only occurred at the latest stages, while no change could be detected in spontaneous inhibitory synaptic transmission or magnitude of long-term potentiation. Also, in contrast to transgenic mice, the microglial response in both App knock-in lines was delayed until a moderate plaque load developed. Surviving PLX5266-depleted microglia tended to be CD68-positive. Partial microglial ablation led to aged but not young wild type animals mimicking the increased glutamate release probability in App knock-ins and exacerbated the App knock-in phenotype. Complete ablation was less effective in altering synaptic function, while neither treatment altered plaque load. Conclusions: Increased glutamate release probability is similar across knock-in and transgenic mouse models of Alzheimer’s disease, likely reflecting acute physiological effects of soluble amyloid beta. Microglia respond later to increased amyloid beta levels by proliferating and upregulating Cd68 and Trem2. Partial depletion of microglia suggests that, in wild type mice, alteration of surviving phagocytic microglia, rather than microglial loss, drives age-dependent effects on glutamate release that become exacerbated in Alzheimer’s disease
    corecore