123 research outputs found

    Arrhythmogenic right ventricular cardiomyopathy mimics: role of cardiovascular magnetic resonance.

    Get PDF
    BACKGROUND: Cardiovascular magnetic resonance (CMR) is commonly used in patients with suspected arrhythmogenic right ventricular cardiomyopathy (ARVC) based on ECG, echocardiogram and Holter. However, various diseases may present with clinical characteristics resembling ARVC causing diagnostic dilemmas. The aim of this study was to explore the role of CMR in the differential diagnosis of patients with suspected ARVC. METHODS: 657 CMR referrals suspicious for ARVC in a single tertiary referral centre were analysed. Standardized CMR imaging protocols for ARVC were performed. Potential ARVC mimics were grouped into: 1) displacement of the heart, 2) right ventricular overload, and 3) non ARVC-like cardiac scarring. For each, a judgment of clinical impact was made. RESULTS: Twenty patients (3.0%) fulfilled imaging ARVC criteria. Thirty (4.6%) had a potential ARVC mimic, of which 25 (3.8%) were considered clinically important: cardiac displacement (n=17), RV overload (n=7) and non-ARVC like myocardial scarring (n=4). One patient had two mimics; one patient had dual pathology with important mimic and ARVC. RV overload and scarring conditions were always thought clinically important whilst the importance of cardiac displacement depended on the degree of displacement from severe (partial absence of pericardium) to epiphenomenon (minor kyphoscoliosis). CONCLUSIONS: Some patients referred for CMR with suspected ARVC fulfil ARVC imaging criteria (3%) but more have otherwise unrecognised diseases (4.6%) mimicking potentially ARVC. Clinical assessment should reflect this, emphasising the assessment and/or exclusion of potential mimics in parallel with the detection of ARVC major and minor criteria

    Cardiac T1 Mapping and Extracellular Volume (ECV) in clinical practice: a comprehensive review.

    Get PDF
    Cardiovascular Magnetic Resonance is increasingly used to differentiate the aetiology of cardiomyopathies. Late Gadolinium Enhancement (LGE) is the reference standard for non-invasive imaging of myocardial scar and focal fibrosis and is valuable in the differential diagnosis of ischaemic versus non-ischaemic cardiomyopathy. Diffuse fibrosis may go undetected on LGE imaging. Tissue characterisation with parametric mapping methods has the potential to detect and quantify both focal and diffuse alterations in myocardial structure not assessable by LGE. Native and post-contrast T1 mapping in particular has shown promise as a novel biomarker to support diagnostic, therapeutic and prognostic decision making in ischaemic and non-ischaemic cardiomyopathies as well as in patients with acute chest pain syndromes. Furthermore, changes in the myocardium over time may be assessed longitudinally with this non-invasive tissue characterisation method

    T1 mapping in cardiac MRI

    Get PDF
    Quantitative myocardial and blood T1 have recently achieved clinical utility in numerous pathologies, as they provide non-invasive tissue characterization with the potential to replace invasive biopsy. Native T1 time (no contrast agent), changes with myocardial extracellular water (edema, focal or diffuse fibrosis), fat, iron, and amyloid protein content. After contrast, the extracellular volume fraction (ECV) estimates the size of the extracellular space and identifies interstitial disease. Spatially resolved quantification of these biomarkers (so-called T1 mapping and ECV mapping) are steadily becoming diagnostic and prognostically useful tests for several heart muscle diseases, influencing clinical decision-making with a pending second consensus statement due mid-2017. This review outlines the physics involved in estimating T1 times and summarizes the disease-specific clinical and research impacts of T1 and ECV to date. We conclude by highlighting some of the remaining challenges such as their community-wide delivery, quality control, and standardization for clinical practice

    Diagnosis of apical hypertrophic cardiomyopathy: T-wave inversion and relative but not absolute apical left ventricular hypertrophy.

    Get PDF
    Diagnosis of apical HCM utilizes conventional wall thickness criteria. The normal left ventricular wall thins towards the apex such that normal values are lower in the apical versus the basal segments. The impact of this on the diagnosis of apical hypertrophic cardiomyopathy has not been evaluated

    Molecular composition of the peri-islet basement membrane in NOD mice: a barrier against destructive insulitis

    Get PDF
    Aims/hypothesisThis study examined whether the capsule which encases islets of Langerhans in the NOD mouse pancreas represents a specialised extracellular matrix (ECM) or basement membrane that protects islets from autoimmune attack.MethodsImmunofluorescence microscopy using a panel of antibodies to collagens type IV, laminins, nidogens and perlecan was performed to localise matrix components in NOD mouse pancreas before diabetes onset, at onset of diabetes and after clinical diabetes was established (2-8.5 weeks post-onset).ResultsPerlecan, a heparan sulphate proteoglycan that is characteristic of basement membranes and has not previously been investigated in islets, was localised in the peri-islet capsule and surrounding intra-islet capillaries. Other components present in the peri-islet capsule included laminin chains alpha2, beta1 and gamma1, collagen type IV alpha1 and alpha2, and nidogen 1 and 2. Collagen type IV alpha3-alpha6 were not detected. These findings confirm that the peri-islet capsule represents a specialised ECM or conventional basement membrane. The islet basement membrane was destroyed in islets where intra-islet infiltration of leucocytes marked the progression from non-destructive to destructive insulitis. No changes in basement membrane composition were observed before leucocyte infiltration.Conclusions/interpretationThese findings suggest that the islet basement membrane functions as a physical barrier to leucocyte migration into islets and that degradation of the islet basement membrane marks the onset of destructive autoimmune insulitis and diabetes development in NOD mice. The components of the islet basement membrane that we identified predict that specialised degradative enzymes are likely to function in autoimmune islet damage.H. F. Irving-Rodgers, A. F. Ziolkowski, C. R. Parish, Y. Sado, Y. Ninomiya, C. J. Simeonovic, R. J. Rodger

    T1 at 1.5T and 3T compared with conventional T2* at 1.5T for cardiac siderosis

    Get PDF
    Background: Myocardial black blood (BB) T2* relaxometry at 1.5T provides robust, reproducible and calibrated non-invasive assessment of cardiac iron burden. In vitro data has shown that like T2*, novel native Modified Look-Locker Inversion recovery (MOLLI) T1 shortens with increasing tissue iron. The relative merits of T1 and T2* are largely unexplored. We compared the established 1.5T BB T2* technique against native T1 values at 1.5T and 3T in iron overload patients and in normal volunteers. Methods: A total of 73 subjects (42 male) were recruited, comprising 20 healthy volunteers (controls) and 53 patients (thalassemia major 22, sickle cell disease 9, hereditary hemochromatosis 9, other iron overload conditions 13). Single mid-ventricular short axis slices were acquired for BB T2* at 1.5T and MOLLI T1 quantification at 1.5T and 3T. Results: In healthy volunteers, median T1 was 1014 ms (full range 939–1059 ms) at 1.5T and modestly increased to 1165ms (full range 1056–1224 ms) at 3T. All patients with significant cardiac iron overload (1.5T T2* values <20 ms) had T1 values <939 ms at 1.5T, and <1056 ms at 3T. Associations between T2* and T1 were found to be moderate with y =377 · x0.282 at 1.5T (R2 = 0.717), and y =406 · x0.294 at 3T (R2 = 0.715). Measures of reproducibility of T1 appeared superior to T2*. Conclusions: T1 mapping at 1.5T and at 3T can identify individuals with significant iron loading as defined by the current gold standard T2* at 1.5T. However, there is significant scatter between results which may reflect measurement error, but it is also possible that T1 interacts with T2*, or is differentially sensitive to aspects of iron chemistry or other biology. Hurdles to clinical implementation of T1 include the lack of calibration against human myocardial iron concentration, no demonstrated relation to cardiac outcomes, and variation in absolute T1 values between scanners, which makes inter-centre comparisons difficult. The relative merits of T1 at 3T versus T2* at 3T require further consideration
    • …
    corecore