72 research outputs found

    Innate immune responses and antioxidant/oxidant imbalance are major determinants of human Chagas disease.

    Get PDF
    We investigated the pathological and diagnostic role of selected markers of inflammation, oxidant/antioxidant status, and cellular injury in human Chagas disease. METHODS: Seropositive/chagasic subjects characterized as clinically-symptomatic or clinically-asymptomatic (n = 116), seronegative/cardiac subjects (n = 102), and seronegative/healthy subjects (n = 45) were analyzed for peripheral blood biomarkers. RESULTS: Seropositive/chagasic subjects exhibited an increase in sera or plasma levels of myeloperoxidase (MPO, 2.8-fold), advanced oxidation protein products (AOPP, 56%), nitrite (5.7-fold), lipid peroxides (LPO, 12-17-fold) and malondialdehyde (MDA, 4-6-fold); and a decline in superoxide dismutase (SOD, 52%) and glutathione (GSH, 75%) contents. Correlation analysis identified a significant (p0.95). The MPO (r = 0.664) and LPO (r = 0.841) levels were also correlated with clinical disease state in chagasic subjects (p<0.001). Seronegative/cardiac subjects exhibited up to 77% decline in SOD, 3-5-fold increase in LPO and glutamate pyruvate transaminase (GPT) levels, and statistically insignificant change in MPO, AOPP, MDA, GPX, GSH, and creatine kinase (CK) levels. CONCLUSIONS: The interlinked effects of innate immune responses and antioxidant/oxidant imbalance are major determinants of human Chagas disease. The MPO, LPO and nitrite are excellent biomarkers for diagnosing seropositive/chagasic subjects, and MPO and LPO levels have potential utility in identifying clinical severity of Chagas diseaseFil: Dhiman, Monisha. University Of Texas Medical Branch. Department Of Microbiology & Immunology And Pathology; United State of America;Fil: Coronado, Yun A.. University Of Texas Medical Branch. Department Of Microbiology & Immunology And Pathology; United State of America;Fil: Vallejo, Cecilia K.. University Of Texas Medical Branch. Department Of Microbiology & Immunology And Pathology; United State of America;Fil: Petersen, John R.. University of Texas Medical Branch. Department of Pathology; United States of America;Fil: Ejilemele, Adetoum. University of Texas Medical Branch. Department of Pathology; United States of America;Fil: Nuñez, Sonia. Hospital Público de Gestión Descentralizada San Bernardo (HPGDSA); Argentina;Fil: Zago, María Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Salta. Instituto de Patologia Experimental; Argentina;Fil: Spratt, Heidi. Departments of Biochemistry and Molecular Biology and Preventive Medicine and Community Health. University of Texas Medical Branch; United States of America;Fil: Garg, Nisha Jain. University of Texas Medical Branch. Department of Pathology; United States of America

    The Potential Economic Value of a Trypanosoma cruzi (Chagas Disease) Vaccine in Latin America

    Get PDF
    The substantial burden of Chagas disease, especially in Latin America, and the limitations of currently available treatment and control strategies have motivated the development of a Trypanosoma cruzi (T. cruzi) vaccine. Evaluating a vaccine's potential economic value early in its development can answer important questions while the vaccine's key characteristics (e.g., vaccine efficacy targets, price points, and target population) can still be altered. This can assist vaccine scientists, manufacturers, policy makers, and other decision makers in the development and implementation of the vaccine. We developed a computational economic model to determine the cost-effectiveness of introducing a T. cruzi vaccine in Latin America. Our results showed vaccination to be very cost-effective, in many cases providing both cost savings and health benefits, even at low infection risk and vaccine efficacy. Moreover, our study suggests that a vaccine may actually “pay for itself”, as even a relatively higher priced vaccine will generate net cost savings for a purchaser (e.g., a country's ministry of health). These findings support continued investments in and efforts toward the development of a human T. cruzi vaccine

    A New Endemic Focus of Chagas Disease in the Northern Region of Veraguas Province, Western Half Panama, Central America

    Get PDF
    Background: Chagas disease was originally reported in Panama in 1931. Currently, the best knowledge of this zoonosis is restricted to studies done in historically endemic regions. However, little is known about the distribution and epidemiology of Chagas disease in other rural areas of the country. Methods and Findings: A cross-sectional descriptive study was carried out between May 2005 – July 2008 in four rural communities of the Santa Fe District, Veraguas Province. The study included an entomologic search to collect triatomines, bloodmeal type identification and infection rate with trypanosomes in collected vectors using a dot- blot and PCR analysis, genotyping of circulating Trypanosoma cruzi (mini-exon gene PCR analysis) and the detection of chagasic antibodies among inhabitants. The vector Rhodnius pallescens was more frequently found in La Culaca and El Pantano communities (788 specimens), where it was a sporadic household visitor. These triatomines presented darker coloration and larger sizescompared with typical specimens collected in Central Panama. Triatoma dimidiata was more common in Sabaneta de El Macho (162 specimens). In one small sub-region (El Macho), 60 % of the houses were colonized by this vector. Of the examined R. pallescens, 54.7.0 % (88/161) had fed on Didelphis marsupialis, and 24.6 % (34/138) of T. dimidiata specimens collected inside houses were positive for human blood. R. pallescens presented an infection index with T. cruzi of 17.7 % (24/ 136), with T. rangeli of 12.5 % (17/136) and 50.7 % (69/136) were mixed infections. In 117 T. dimidiata domestic specimens th

    Diabetes-related molecular signatures in infrared spectra of human saliva

    Get PDF
    WOS: 000290261500001PubMed ID: 20630088Background: There is an ongoing need for improvements in non-invasive, point-of-care tools for the diagnosis and prognosis of diabetes mellitus. Ideally, such technologies would allow for community screening. Methods: In this study, we employed infrared spectroscopy as a novel diagnostic tool in the prediction of diabetic status by analyzing the molecular and sub-molecular spectral signatures of saliva collected from subjects with diabetes (n = 39) and healthy controls (n = 22). Results: Spectral analysis revealed differences in several major metabolic components - lipid, proteins, glucose, thiocyanate and carboxylate - that clearly demarcate healthy and diseased saliva. The overall accuracy for the diagnosis of diabetes based on infrared spectroscopy was 100% on the training set and 88.2% on the validation set. Therefore, we have established that infrared spectroscopy can be used to generate complex biochemical profiles in saliva and identify several potential diabetes-associated spectral features. Conclusions: Infrared spectroscopy may represent an appropriate tool with which to identify novel diseases mechanisms, risk factors for diabetic complications and markers of therapeutic efficacy. Further study into the potential utility of infrared spectroscopy as diagnostic and prognostic tool for diabetes is warranted

    Th17 cells are more protective than Th1 cells against the intracellular parasite Trypanosoma cruzi

    Get PDF
    Th17 cells are a subset of CD4+ T cells known to play a central role in the pathogenesis of many autoimmune diseases, as well as in the defense against some extracellular bacteria and fungi. However, Th17 cells are not believed to have a significant function against intracellular infections. In contrast to this paradigm, we have discovered that Th17 cells provide robust protection against Trypanosoma cruzi, the intracellular protozoan parasite that causes Chagas disease. Th17 cells confer significantly stronger protection against T. cruzi-related mortality than even Th1 cells, traditionally thought to be the CD4+ T cell subset most important for immunity to T. cruzi and other intracellular microorganisms. Mechanistically, Th17 cells can directly protect infected cells through the IL-17A-dependent induction of NADPH oxidase, involved in the phagocyte respiratory burst response, and provide indirect help through IL-21-dependent activation of CD8+ T cells. The discovery of these novel Th17 cell-mediated direct protective and indirect helper effects important for intracellular immunity highlights the diversity of Th17 cell roles, and increases understanding of protective T. cruzi immunity, aiding the development of therapeutics and vaccines for Chagas disease

    Protective Human Leucocyte Antigen Haplotype, HLA-DRB1*01-B*14, against Chronic Chagas Disease in Bolivia

    Get PDF
    Chronic Chagas disease consists of four different forms categorized on the basis of their clinical manifestations, namely; cardiac, digestive, cardiodigestive and indeterminate. In Latin America, there are 8–10 million seropositive persons who are at risk of, or have already developed serious clinical complications and who have limited access to effective treatment. The cardiac and digestive forms are characterized by tissue damage caused by persistent infection of Trypanosoma cruzi and are thought to be modulated by host immunity. In our large scale screening for chronic Chagas disease in Santa Cruz, Bolivia, hearts and colons of 229 seropositive patients were examined. We found 31.4% of patients had abnormal electrocardiograms (ECGs), 15.7% presented with megacolon, 5.2% had a combination of abnormal ECG and megacolon, and 58.1% were of indeterminate status. Previously, we attempted to ascertain whether parasite genetic polymorphism might account for the differences in clinical manefestations, by analyzing parasite DNA taken from the same study group (with the addition of a further 62 megacolon post-operational patients). We found no relationships between parasite lineages and clinical disease form. The present study reveals that host HLA polymorphisms associate with clinical manifestations of Chagas

    The Short Non-Coding Transcriptome of the Protozoan Parasite Trypanosoma cruzi

    Get PDF
    The pathway for RNA interference is widespread in metazoans and participates in numerous cellular tasks, from gene silencing to chromatin remodeling and protection against retrotransposition. The unicellular eukaryote Trypanosoma cruzi is missing the canonical RNAi pathway and is unable to induce RNAi-related processes. To further understand alternative RNA pathways operating in this organism, we have performed deep sequencing and genome-wide analyses of a size-fractioned cDNA library (16–61 nt) from the epimastigote life stage. Deep sequencing generated 582,243 short sequences of which 91% could be aligned with the genome sequence. About 95–98% of the aligned data (depending on the haplotype) corresponded to small RNAs derived from tRNAs, rRNAs, snRNAs and snoRNAs. The largest class consisted of tRNA-derived small RNAs which primarily originated from the 3′ end of tRNAs, followed by small RNAs derived from rRNA. The remaining sequences revealed the presence of 92 novel transcribed loci, of which 79 did not show homology to known RNA classes

    Chagas Cardiomyopathy Manifestations and Trypanosoma cruzi Genotypes Circulating in Chronic Chagasic Patients

    Get PDF
    Chagas disease caused by Trypanosoma cruzi is a complex disease that is endemic and an important problem in public health in Latin America. The T. cruzi parasite is classified into six discrete taxonomic units (DTUs) based on the recently proposed nomenclature (TcI, TcII, TcIII, TcIV, TcV and TcVI). The discovery of genetic variability within TcI showed the presence of five genotypes (Ia, Ib, Ic, Id and Ie) related to the transmission cycle of Chagas disease. In Colombia, TcI is more prevalent but TcII has also been reported, as has mixed infection by both TcI and TcII in the same Chagasic patient. The objectives of this study were to determine the T. cruzi DTUs that are circulating in Colombian chronic Chagasic patients and to obtain more information about the molecular epidemiology of Chagas disease in Colombia. We also assessed the presence of electrocardiographic, radiologic and echocardiographic abnormalities with the purpose of correlating T. cruzi genetic variability and cardiac disease. Molecular characterization was performed in Colombian adult chronic Chagasic patients based on the intergenic region of the mini-exon gene, the 24Sα and 18S regions of rDNA and the variable region of satellite DNA, whereby the presence of T.cruzi I, II, III and IV was detected. In our population, mixed infections also occurred, with TcI-TcII, TcI-TcIII and TcI-TcIV, as well as the existence of the TcI genotypes showing the presence of genotypes Ia and Id. Patients infected with TcI demonstrated a higher prevalence of cardiac alterations than those infected with TcII. These results corroborate the predominance of TcI in Colombia and show the first report of TcIII and TcIV in Colombian Chagasic patients. Findings also indicate that Chagas cardiomyopathy manifestations are more correlated with TcI than with TcII in Colombia

    Overview of data-synthesis in systematic reviews of studies on outcome prediction models

    Get PDF
    Background: Many prognostic models have been developed. Different types of models, i.e. prognostic factor and outcome prediction studies, serve different purposes, which should be reflected in how the results are summarized in reviews. Therefore we set out to investigate how authors of reviews synthesize and report the results of primary outcome prediction studies. Methods: Outcome prediction reviews published in MEDLINE between October 2005 and March 2011 were eligible and 127 Systematic reviews with the aim to summarize outcome prediction studies written in English were identified for inclusion. Characteristics of the reviews and the primary studies that were included were independently assessed by 2 review authors, using standardized forms. Results: After consensus meetings a total of 50 systematic reviews that met the inclusion criteria were included. The type of primary studies included (prognostic factor or outcome prediction) was unclear in two-thirds of the reviews. A minority of the reviews reported univariable or multivariable point estimates and measures of dispersion from the primary studies. Moreover, the variables considered for outcome prediction model development were often not reported, or were unclear. In most reviews there was no information about model performance. Quantitative analysis was performed in 10 reviews, and 49 reviews assessed the primary studies qualitatively. In both analyses types a range of different methods was used to present the results of the outcome prediction studies. Conclusions: Different methods are applied to synthesize primary study results but quantitative analysis is rarely performed. The description of its objectives and of the primary studies is suboptimal and performance parameters of the outcome prediction models are rarely mentioned. The poor reporting and the wide variety of data synthesis strategies are prone to influence the conclusions of outcome prediction reviews. Therefore, there is much room for improvement in reviews of outcome prediction studies. (aut.ref.

    A Novel Method for Inducing Amastigote-To-Trypomastigote Transformation In Vitro in Trypanosoma cruzi Reveals the Importance of Inositol 1,4,5-Trisphosphate Receptor

    Get PDF
    Background Trypanosoma cruzi is a parasitic protist that causes Chagas disease, which is prevalent in Latin America. Because of the unavailability of an effective drug or vaccine, and because about 8 million people are infected with the parasite worldwide, the development of novel drugs demands urgent attention. T. cruzi infects a wide variety of mammalian nucleated cells, with a preference for myocardial cells. Non-dividing trypomastigotes in the bloodstream infect host cells where they are transformed into replication-capable amastigotes. The amastigotes revert to trypomastigotes (trypomastigogenesis) before being shed out of the host cells. Although trypomastigote transformation is an essential process for the parasite, the molecular mechanisms underlying this process have not yet been clarified, mainly because of the lack of an assay system to induce trypomastigogenesis in vitro. Methodology/Principal Findings Cultivation of amastigotes in a transformation medium composed of 80% RPMI-1640 and 20% Grace\u27s Insect Medium mediated their transformation into trypomastigotes. Grace\u27s Insect Medium alone also induced trypomastigogenesis. Furthermore, trypomastigogenesis was induced more efficiently in the presence of fetal bovine serum. Trypomastigotes derived from in vitro trypomastigogenesis were able to infect mammalian host cells as efficiently as tissue-culture-derived trypomastigotes (TCT) and expressed a marker protein for TCT. Using this assay system, we demonstrated that T. cruzi inositol 1,4,5-trisphosphate receptor (TcIP3R) - an intracellular Ca2+ channel and a key molecule involved in Ca2+ signaling in the parasite - is important for the transformation process. Conclusion/Significance Our findings provide a new tool to identify the molecular mechanisms of the amastigote-totrypomastigote transformation, leading to a new strategy for drug development against Chagas disease
    corecore