512 research outputs found

    SERPent: Automated reduction and RFI-mitigation software for e-MERLIN

    Get PDF
    The Scripted E-merlin Rfi-mitigation PipelinE for iNTerferometry (SERPent) is an automated reduction and RFI-mitigation procedure utilising the SumThreshold methodology (Offringa et al., 2010a), originally developed for the LOFAR pipeline. SERPent is written in the Parseltongue language enabling interaction with the Astronomical Image Processing Software (AIPS) program. Moreover, SERPent is a simple ‘out of the box’ Python script, which is easy to set up and is free of compilers. In addition to the flagging of RFI affected visibilities, the script also flags antenna zero-amplitude dropouts and Lovell telescope phase calibrator stationary scans inherent to the e-MERLIN system. Both the flagging and computational performances of SERPent are presented here, for e-MERLIN commissioning datasets for both L-band (1.3–1.8 GHz) and C-band (4–8 GHz) observations. RFI typically amounts to <20%–25% for the more problematic L-band observations and <5% for the generally RFI quieter C-band. The level of RFI detection and flagging is more accurate and delicate than visual manual flagging, with the output immediately ready for AIPS calibration. SERPent is fully parallelised and has been tested on a range of computing systems. The current flagging rate is at 110 GB day−1 on a ‘high-end’ computer (16 CPUs, 100 GB memory) which amounts to ∼6.9 GB CPU−1 day−1, with an expected increase in performance when e-MERLIN has completed its commissioning. The refining of automated reduction and calibration procedures is essential for the e-MERLIN legacy projects and future interferometers such as the SKA and the associated pathfinders (MeerKAT and ASKAP), where the vast data sizes (>TB) make traditional astronomer interactions unfeasible

    An interview with Eustáquio A. Araujo

    Full text link

    VECTORS of change in the marine environment: Ecosystem and economic impacts and management implications

    Get PDF
    Human use of the European marine environment is increasing and diversifying. This is creating new mechanisms for human induced-changes in marine life which need to be understood and quantified as well as the impact of these changes on ecosystems, their structures (e.g. biodiversity) and functioning (e.g. productivity), and the social and economic consequences that arise. The current and emerging pressures are multiple and interacting, arising, for example, from transport, platforms for renewable and nonrenewable energy, exploitation of living and non-living resources, agricultural and industrial discharges, together with wider environmental changes (including climate change). Anticipating the future consequences of these pressures and vectors of change for marine life and of adaptation and mitigation measures (such as the introduction of new technologies and structures, new ballast water practices, ocean and offshore wind energy devices and new fishing strategies) is a prerequisite to the development and implementation of strategies, policies and regulations to manage the marine environment, such as the IMO Convention on ballast water management and the EU Maritime Policy and Marine Strategy Framework Directive

    Scallop swimming kinematics and muscle performance: modelling the effects of "within-animal" variation in temperature sensitivity

    Get PDF
    Escape behaviour was investigated in Queen scallops (Aequipecten opercularis) acclimated to 5, 10 or 15 degrees C and tested at their acclimation temperature. Scallops are active molluscs, able to escape from predators by jet-propelled swimming using a striated muscle working in opposition to an elastic hinge ligament. The first cycle of the escape response was recorded using high-speed video ( 250 Hz) and whole-animal velocity and acceleration determined. Muscle shortening velocity, force and power output were calculated using measurements of valve movement and jet area, and a simple biomechanical model. The average shortening speed of the adductor muscle had a Q(10) of 2.04, significantly reducing the duration of the jetting phase of the cycle with increased temperature. Muscle lengthening velocity and the overall duration of the clap cycle were changed little over the range 5 - 15 degrees C, as these parameters were controlled by the relatively temperature-insensitive, hinge ligament. Improvements in the average power output of the adductor muscle over the first clap cycle ( 222 vs. 139 W kg(-1) wet mass at 15 and 5 degrees C respectively) were not translated into proportional increases in overall swimming velocity, which was only 32% higher at 15 degrees C ( 0.37m s(-1)) than 5 degrees C (0.28 m s(-1))

    Role of chance and history during evolution in Chlamydomonas reinhardtii

    Get PDF
    The extent to which evolution is repeatable has important implications. If evolution is highly repeatable, the trajectories and outcomes of evolution in different lineages will always be the same. On the other hand, if evolution is not repeatable, then trajectories and outcomes will be diverse. Thus, the repeatability of evolution affects our understanding of the nature of biodiversity and can inform the extent to which evolutionary theory can be used to make predictions. The repeatability of evolution depends on the relative contribution of selection, chance, and history. To determine what factors affect the importance of chance and history during evolution, I propagated replicated populations of the unicellular green alga Chlamydomonas reinhardtii in controlled environments. I measured the change in fitness after a few hundred generations and determined how much variation had arisen among replicate populations and among populations with different histories. I applied a similar approach to study the importance of history in extinctions, and measured rates of extinction in populations with different histories. I found that evolution is much less repeatable in small than in large populations because history is more constraining and selection less efficient in small than in large populations. There is also a significant effect of sex and recombination on the repeatability of evolution at the fitness level, but this effect is highly dependent on the environment of selection. Sex can increase the importance of chance or history in some environments, but lower their importance in others, thereby leading to convergence or divergence depending on the environment. Thirdly, I found that the importance of history during evolution does not appear to come from the accumulation of past evolutionary selection pressures, but rather comes from only the most recent selection pressure as it determines genetic correlations for growth between different environments and the amount of genetic variance. Finally, I found that extinction risks are extremely high during continuous environmental deterioration, although a history of sexual reproduction and phenotypic plasticity play an important role in adaptation. By focusing not solely on the effect of treatments on mean trait values, but also on the variance that arises in our evolution experiments, we can gain a better understanding of the contribution that chance and history make to evolution. The repeatability of evolution can therefore inform us about the adaptive vs. stochastic nature of the diversity we see today, and about the specificity or generality of evolutionary outcomes

    Multisensory information facilitates reaction speed by enlarging activity difference between superior colliculus hemispheres in rats

    Get PDF
    Animals can make faster behavioral responses to multisensory stimuli than to unisensory stimuli. The superior colliculus (SC), which receives multiple inputs from different sensory modalities, is considered to be involved in the initiation of motor responses. However, the mechanism by which multisensory information facilitates motor responses is not yet understood. Here, we demonstrate that multisensory information modulates competition among SC neurons to elicit faster responses. We conducted multiunit recordings from the SC of rats performing a two-alternative spatial discrimination task using auditory and/or visual stimuli. We found that a large population of SC neurons showed direction-selective activity before the onset of movement in response to the stimuli irrespective of stimulation modality. Trial-by-trial correlation analysis showed that the premovement activity of many SC neurons increased with faster reaction speed for the contraversive movement, whereas the premovement activity of another population of neurons decreased with faster reaction speed for the ipsiversive movement. When visual and auditory stimuli were presented simultaneously, the premovement activity of a population of neurons for the contraversive movement was enhanced, whereas the premovement activity of another population of neurons for the ipsiversive movement was depressed. Unilateral inactivation of SC using muscimol prolonged reaction times of contraversive movements, but it shortened those of ipsiversive movements. These findings suggest that the difference in activity between the SC hemispheres regulates the reaction speed of motor responses, and multisensory information enlarges the activity difference resulting in faster responses

    The infuence of skin colour on the experience of ownership in the rubber hand illusion

    Get PDF
    Racial prejudice is associated with a fundamental distinction between "us" and "them"-a distinction linked to the perceived overlap between representations of the self and others. Implicit prejudice has been shown to reduce the intensity of White individuals' hand ownership sensation as induced by the Rubber Hand Illusion (RHI) with dark rubber hands. However, evidence for this link to implicit prejudice comes from self-report questionnaire data regarding the RHI. As an alternative, we assessed the onset time of the RHI. We hypothesized that onset time of the RHI would be higher for the black compared to the white RH, acting as the mediator between implicit prejudice and magnitude of the RH illusion and proprioceptive drift. As expected, participants took longer to incorporate the black RH and presented lower RH illusion magnitude and a smaller proprioceptive drift for the black RH. Mediation analysis revealed a significant indirect effect of implicit racial bias on proprioceptive drift and magnitude of illusion through onset time to illusion only for the black RH. These findings further illuminate the connection between implicit prejudice and embodied perception, suggesting new perspectives on how implicit biases operate.This work was supported by Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq; grant numbers: 466922/2014-0 and 401143/2014-7).info:eu-repo/semantics/publishedVersio

    The Mere Exposure Effect in the Domain of Haptics

    Get PDF
    Background: Zajonc showed that the attitude towards stimuli that one had been previously exposed to is more positive than towards novel stimuli. This mere exposure effect (MEE) has been tested extensively using various visual stimuli. Research on the MEE is sparse, however, for other sensory modalities. Methodology/Principal Findings: We used objects of two material categories (stone and wood) and two complexity levels (simple and complex) to test the influence of exposure frequency (F0 = novel stimuli, F2 = stimuli exposed twice, F10 = stimuli exposed ten times) under two sensory modalities (haptics only and haptics &amp; vision). Effects of exposure frequency were found for high complex stimuli with significantly increasing liking from F0 to F2 and F10, but only for the stone category. Analysis of ‘‘Need for Touch’ ’ data showed the MEE in participants with high need for touch, which suggests different sensitivity or saturation levels of MEE. Conclusions/Significance: This different sensitivity or saturation levels might also reflect the effects of expertise on the haptic evaluation of objects. It seems that haptic and cross-modal MEEs are influenced by factors similar to those in the visual domain indicating a common cognitive basis
    corecore