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a b s t r a c t

The Scripted E-merlin Rfi-mitigation PipelinE for iNTerferometry (SERPent) is an automated reduction
and RFI-mitigation procedure utilising the SumThreshold methodology (Offringa et al., 2010a), originally
developed for the LOFAR pipeline. SERPent is written in the Parseltongue language enabling interaction
with the Astronomical Image Processing Software (AIPS) program. Moreover, SERPent is a simple ‘out
of the box’ Python script, which is easy to set up and is free of compilers. In addition to the flagging of
RFI affected visibilities, the script also flags antenna zero-amplitude dropouts and Lovell telescope phase
calibrator stationary scans inherent to the e-MERLIN system.

Both the flagging and computational performances of SERPent are presented here, for e-MERLIN
commissioning datasets for both L-band (1.3–1.8 GHz) and C-band (4–8 GHz) observations. RFI typically
amounts to <20%–25% for the more problematic L-band observations and <5% for the generally RFI
quieter C-band. The level of RFI detection and flagging is more accurate and delicate than visual manual
flagging, with the output immediately ready for AIPS calibration. SERPent is fully parallelised and has
been tested on a range of computing systems. The current flagging rate is at 110 GB day−1 on a ‘high-end’
computer (16 CPUs, 100 GBmemory) which amounts to∼6.9 GB CPU−1 day−1, with an expected increase
in performance when e-MERLIN has completed its commissioning.

The refining of automated reduction and calibration procedures is essential for the e-MERLIN legacy
projects and future interferometers such as the SKA and the associated pathfinders (MeerKAT andASKAP),
where the vast data sizes (>TB) make traditional astronomer interactions unfeasible.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Modern interferometers are becoming increasingly more sen-
sitive and powerful, with resulting datasets becoming ever bigger.
Therefore, the need for automation of certain procedures in reduc-
tion and calibration of interferometric data is vital. A major ‘bot-
tleneck’ in this reduction and calibration procedure is the manual
removal of radio-frequency interference (RFI) and other bad unus-
able data by the user. Until recently, the manual flagging of typical
datasets took a reasonable amount of time,with data sizes being on
the order of Megabytes (MB). However, with improvements in re-
ceivers, electronics, correlators and optical fibre networks, obser-
vations now span awide frequency range into bands, which are not
protected for radio astronomy, thereby increasing the incidence of
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RFI. With future emphasis on multi-observation and full sky sur-
veys (in the case of the SKA), data sizes will be on the order of Ter-
abytes (TB), making manual flagging unfeasible. It is clear that the
automation of this process is necessary for the current generation
of interferometers such as e-MERLIN, JVLA, ALMA, LOFAR and for
future interferometers (MeerKAT, ASKAP, SKA).

One of the toughest challenges in RFI mitigation is accounting
for its variable intensity,morphology andunpredictable nature. RFI
can arise from many sources such as radio stations, microwaves,
lightning, aeroplanes, mobile phones, CCTV etc. Some of these oc-
cur at specific frequencies (radio stations, mobile phones) andmay
only be problematic for certain arrays. Understanding individual
array characteristics and the RFI environment it is situated in,
needs to be considered to achieve optimal RFI reduction. Therefore,
creating robustmethods tomitigate RFI is essential. Mitigation can
be applied at two stages in the interferometric data reduction pro-
cess: pre-correlation and post-correlation and both can be compli-
mentary to one another, as they will remove different kinds of RFI.

Pre-correlation is a very powerful option for RFI-mitigation
because the observational data is still in its highest time resolution
(sub-integration time) (Offringa et al., 2010a), although executing
the processes on small sections of the entire observation at the
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Fig. 1. Time–frequency plot of the visibilities of the source 0555 + 398 from the
COBRaS commissioning dataW1 2011. A single IF and RR polarisation is shownwith
a frequency range from4.54 to 4.66GHz from the baseline Knockin–Pickmere (5–7).
RFI is seen to vary both in time (vertical axes) and frequency (horizontal axes) at
around 4.64 GHz.

station in real time is challenging. Numerous techniques have been
developed for pre-correlation flagging, for example: thresholding
methods using χ2 statistics (Weber et al., 1997), the cumulative
sum method (Baan et al., 2004) and asynchronous pulse blanking
(Niamsuwan et al., 2005).

Post-correlation is the final stage to remove RFI before calibra-
tion procedures. Methods include the use of an independent RFI
reference signal to subtract RFI (Briggs et al., 2000) and fringe-
fitting for spatially and temporally constant RFI (Athreya, 2009).
Thresholding methods remain an effective way to mitigate RFI as
the amplitudes of the visibilities will be increased by the RFI. Of-
fringa et al. (2010a) analyse a number of threshold methods with
simulated and real data from LOFAR and WSRT, and demonstrate
that the SumThresholdmethod (explained in Section 3.1) performs
better than the other rival methods. These include the Cumula-
tive Summethod, VarThreshold and Singular Value Decomposition
(SVD).

Since every interferometer around the world has a different
baseline distribution, location, observed frequency band, RFI en-
vironment etc., the method of mitigation needs consideration and
the implementation and parameters used may need to be opti-
mised to suit any individual array. For example,WSRT is a large and
sparse interferometer where the RFI is sometimes partially coher-
ent. For this reason, post-correlation spatial processing algorithms
are not always effective. Baan et al. (2004) conclude that real-time,
pre-correlation time–frequency analysis conducted at each an-
tenna would be more effective than any post-correlation method.

In the case of e-MERLIN, there is no software or hardware
available at Jodrell bank which would enable pre-correlation
flagging to take place, other than any online flagging performed
by the correlator. Therefore subsequent pipelines for e-MERLIN
must include reduction and RFI mitigation processes which use
post-correlation techniques such as those described by Offringa
et al. (2010a). Given the RFI environment for e-MERLIN and the
incidence of RFI varying simultaneously over time and frequency
(example: Fig. 1), thresholding post-correlation methods are
necessary in order to robustly mitigate this type of RFI.

Automated flaggers are compared on accuracy, computational
performance, robustness and any technical requirements they
Fig. 2. Positions of the seven radio telescopes of e-MERLIN across the United
Kingdom. Clockwise from top; Lovell, Mark II, Cambridge, Defford, Knockin,
Darnhall and Pickmere. The longest baseline is 217 km, giving resolutions of 150,
40 and 12 mas at 1.3–1.8, 4–8 and 22–24 GHz respectively.

impose (Offringa et al., 2010b). These criteria and the needs of
the interferometer, will define which method is the most practical
for that particular array. The aim of the Scripted E-MERLIN RFI-
mitigation PypelinE for iNTerferometry (SERPent) is to provide
an automated script which can be easily executed and combined
with the existing or future pipelines which fully reduces and flags
radio interferometric data. This has been designed specifically
for e-MERLIN and one of its Legacy projects: the Cygnus OB2
Radio Survey (COBRaS),1 but is currently being tested on other
instruments.

2. e-MERLIN

e-MERLIN2 is a UK National Facility operated by The University
of Manchester on behalf of the Science and Technology Facilities
Council (STFC). It is an upgrade to the MERLIN (Multi-Element
Radio Linked Interferometer Network) array, consisting of seven
radio telescopes. Fig. 2 shows the distribution of telescopes
spanning across the UK.

The upgrade consists of a new optical fibre network which
connects each telescope to the Jodrell Bank Observatory, where
the new WIDAR correlator developed by DRAO resides. New
bandwidth receivers increase the useable bandwidth by twoorders
of magnitude, resulting in a continuum sensitivity increase of a
factor of 10 or more compared to the old MERLIN array. There
are three observing bands for e-MERLIN. L-band operates at
1.3–1.8 GHz, C-band at 4–8 GHz and K-band at 22–24 GHz, with
the available maximum bandwidths of 512 MHz for L-band and
2048 MHz for C and K-bands per polarisation (circular).

In this paper, we will refer to observations with frequencies
between 1.3 and 1.8 GHz as L-band as the bandwidth encompasses
all of these frequencies. Observations with frequencies between 4
and 8 GHz will be referred to as C-band. All bands are comprised
of smaller sub-bands or intermediate frequencies (IFs; in the AIPS
nomenclature), which segregate the total bandwidth into groups
of channels.

1 COBRaS: http://www.ucl.ac.uk/star/research/stars_galaxies/cobras.
2 e-MERLIN: http://www.merlin.ac.uk/e-merlin/.

http://www.ucl.ac.uk/star/research/stars_galaxies/cobras
http://www.merlin.ac.uk/e-merlin/
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Table 1
Technical capabilities of e-MERLIN.

1.5 GHz
(L-band)

5 GHz
(C-band)

22 GHz
(K-band)

Resolution (mas) 150 40 12
Field of view (arcmin) 30 7 2.0
Bandwidth (GHz) 0.5 2 2
Freq. range (GHz) 1.3–1.8 4–8 22–24
Sensitivity in full imaging run (µJy/bm) 5–6 1.8–2.3 ∼15
Surface brightness sensitivity (K) ∼190 ∼70 ∼530
Astrometric performance (mas) ∼2 ∼1 ∼2
Amplitude calibration 2% 1% 10%

General capabilities of the full e-MERLIN array. The sensitivity and surface
brightness numbers include e-MERLIN and the Lovell telescope. The field of
view decreases with the inclusion of the Lovell telescope by approximately
20/(freq/1.4 GHz) arcmin. This table is taken from the e-MERLIN website:
http://www.e-merlin.ac.uk/tech/.

The shortest baseline of e-MERLIN is the Lovell–Mark II baseline
of 400 m, but the large difference in uv-spacing sampled between
this baseline and the next shortest baseline of ∼11 km (Mark
II–Pickmere), means the Lovell–Mark II baseline is not used. This
is because there is inadequate data to fully recover any diffuse
structures seen on this very short baseline and connect the spatial
scales detected by the other baselines in the array during the
imaging process (Rob Beswick, private communication). Therefore,
the smallest useable baseline is Mark II–Pickmere (11 km) and the
largest baseline is Lovell–Cambridge (217 km).

This provides e-MERLIN with resolutions of 150, 40 and 12 mas
for 1.3–1.8, 4–8 and 22–24 GHz observations respectively. Table 1
gives the expected technical capabilities of a fully commissioned
e-MERLIN array.

The new correlator at Jodrell Bank Observatory is a smaller
version of the WIDAR correlator at the JVLA. A range of correlator
capabilities are available for both continuum and spectral-line
observations, and we refer the reader to the relevant literature for
details (Garrington et al., 2004, http://www.e-merlin.ac.uk/tech/).

The legacy projects and open proposals will feature a variety
of astronomical themes and areas, requiring a slightly tailored
approach to observational modes used for each proposal. This ob-
viously has an effect on the data volume output from any observa-
tion. For a standard continuum observation in C-band from a full
spec e-MERLIN, with a typical observing run of∼18 h in length the
total data volume can be anywhere between 500 GB and 1 TB per
day. This is assuming a typical time resolution of 1 s and frequency
resolution of 250 kHz.

For spectral-line observations, the data volume can be expected
to be even greater, with the highest available time and frequency
resolutions of 1/4 seconds and 50 kHz respectively. All data
is initially stored at Jodrell Bank and is copied and processed
elsewhere.

3. Post-correlation RFI-mitigation

3.1. SumThreshold method

The current most effective thresholding method is demon-
strated by Offringa et al. (2010a) to be the SumThreshold and this
is the adopted RFI detection algorithm for SERPent. An overview of
the method is given here, for a more in depth analysis of the pro-
cess please see the afore-mentioned literature.

RFI increases visibility amplitudes for the times and frequencies
they are present. Threshold methods work on the basis that if
the RFI amplitudes are above a certain threshold condition, they
are detected and flagged. The threshold level is dictated by the
statistics of the relevant visibility subset, which can be the entire
observation (all time scans, frequency channels, baselines etc.)
or a smaller portion, for example: separate baselines, IFs and
polarisations. This has the advantage of increasing the reliability
of the statistics, because RFI may be independent of baseline and
the distribution between IFsmaydiffer. This is particularly relevant
for L-band (1.3–1.8 GHz) observations where the RFI is more
problematic.

Our tests also show that splitting the data in this manner,
benefits the computational performance of SERPent. The reason
for this is uncertain, however, this could be a function of memory
usage within Python.

The SumThreshold method applied in SERPent, works on data
which is separated by baselines and polarisations and arranged in
a 2D array, with the individual time scans and frequency channels
comprising the array axes i.e. time–frequency space. The frequency
axis is further split by IFs due to the way the data is segregated
within the fits file. The idea is that peak RFI and broadband RFI will
be easily detectable when the visibility amplitudes are arranged in
time–frequency space.

The e-MERLIN correlator outputs three numbers associated
with any single visibility: the real part, the complex part and
the weight of the visibility. When appending visibilities in the
time–frequency space, if the weight is greater than 0.0 i.e. data
exists for that time and frequency, then the magnitude of the
real and complex part of the visibility is taken to constitute the
amplitude. If the weight is 0.0 or less, i.e. no data exist for this
baseline, time scan etc., then the amplitude is set to ‘NaN’. This
has no effect on the statistics or threshold value, but acts as a
substitute for that elemental position within the array, which both
AIPS and SERPent require to retain the correct information. The
Python module NumPy is employed to create and manipulate
the 2D arrays, as the module is implemented with performance-
optimised Fortran code.3

There are two concepts associated with the SumThreshold
method: the threshold and the subset size. A subset is a small slice
of the total elements (in this case visibility amplitudes) in a certain
direction of the array (time or frequency). The difference between
the SumThreshold method (a type of combinatorial thresholding)
and normal thresholding is that after each individual element in
the array has been tested against a threshold of N elements, the
flagged values are averaged to the threshold level of subsequent
runs. Moreover, the first threshold χ(1) is determined by statistics
from the initial sample of visibilities, and subsequent thresholds
χ(N) (where N > 1) are relative to χ(1). Threshold levels are
discussed in more detail in Section 3.2.

Empirically a small subset N = [1, 2, 4, 8, 16, 32, 64] works
well (Offringa et al., 2010a). A window of size N cycles through the
array in one direction (e.g. time) for every possible permutation of
connected samples for the given array and subset size. After each
subset cycle a float array of identical size records the positions of
any elements which are flagged. A 0.0 denotes a normal visibility,
1.0 signifies RFI in the time direction, 2.0 for the frequency
direction and higher values for any subsequent runs of the flagger.
At the beginning of the next subset cycle, for any element within
the flag array whose value is greater than 0.0, the corresponding
amplitude in the visibility array is reduced to the threshold level
χ(N). If a group of elements of any subset size N is found to be
greater than the threshold level χ(N), then all elements within
thatwindoware flagged. Thismethod is implemented in both array
directions (i.e. time and frequency).

In addition to the SumThreshold methodology, certain clauses
have been added to prevent the algorithm from over-flagging the
dataset. If any threshold level reaches themean+variance estimate
the flagging run for that direction stops. The flagging process can

3 It should be noted here, that how thismodule is compiled can have a significant
effect on performance.

http://www.e-merlin.ac.uk/tech/
http://www.e-merlin.ac.uk/tech/
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runmultiple times at the cost of computational time, andbydefault
an initial run of subsetN = 1 only, is included to remove extremely
high amplitude RFI. This is followed by two full runs, providing
that two conditions are met: the maximum value within the array
after each run is a certain factor of the median and flags exist from
the previous run. On each subsequent cycle, all flagged visibilities
from the previous run are set to the next threshold in the visibility
array so they do not skew the statistics and any weaker RFI which
may remain can be found. This is necessary because some RFI in
the e-MERLIN commissioning data are found to be over 10,000
times stronger than the astronomical signal with some weaker RFI
present.

For the first full run, the subset size doubles each step up to 32,
and for the second full run, to 256. This can be manually changed
to lower values by the user to save time if there is not much RFI in
the observations.

3.2. Statistical variance estimators

The variance of a sample is an important estimator of statistical
outliers. Some statistical methods are sensitive to extreme values
whereas others are robust against them. A study into a range
of methods and various estimators are described and tested by
Fridman (2008). Themedian absolute deviation (MAD) andmedian
of pairwise averaged squares are the most effective estimators
that remove outliers, although Fridman (2008) comments that
both are not as efficient, (i.e. needs more samples to produce
the same power) as other methods. Since the sample size in
any given observation from e-MERLIN will be of adequate size,
this is not such an issue. The breakdown point for MAD is also
very high (0.5), i.e. almost half the data may be contaminated by
outliers (Fridman, 2008). MAD is adopted for this algorithm as an
initial statistical estimator of the visibility population because of
these robust properties. Again, Fridman (2008) stresses that the
type and intensity of RFI, type of observation and the method
of implementation are important factors when deciding what
estimate to use for any given interferometer.

The MAD is the estimate of the variance used in the SERPent
algorithm and is defined by Eq. (1), where mediani(xi) is the
median of the original population. This median is then subtracted
from every element in the population, creating a new modified
sample of the same size as the original. The median of this
new population is then calculated and multiplied by a constant
1.4286 tomake this estimation consistent with that of an expected
Gaussian distribution.

MAD = 1.4826 medianj{|xj − mediani (xi) |}. (1)

The first threshold level χ(1) is determined by the median of
the sample (median(xi)), the variance estimator (MAD) and an ag-
gressiveness parameter β as shown in Eq. (2) (Niamsuwan et al.,
2005). Since the median is less sensitive to outliers, it is preferred
to the traditional mean in this equation and the MAD to the tradi-
tional standard deviation for the variance for similar reasons. If the
data is Gaussian in nature then theMAD valuewill be similar to the
standard deviation (and themedian to themean). A range of values
forβ has been tested formultiple observations and frequencies and
a stable value of around β = 25 was found. Increasing the value of
β reduces the aggressiveness of the threshold and decreasing the
value increases the aggressiveness.

χ(1) = mediani (xi) + βMAD. (2)

The subsequent threshold levels are determined by Eq. (3)
where N is the subset value, and ρ = 1.5, this empirically works
well for the SumThreshold method (Offringa et al., 2010a) and
defines how coarse the difference in threshold levels is.

χ(N) =
χ(N)

ρ log2N
(3)
3.3. SERPent flagging script

It is anticipated that e-MERLIN data will be processed using a
variety of software packages,most commonlyAIPS (Greisen, 2003).
Parseltongue4 is a Python based languagewhich enables AIPS tasks
to be imported as modules into the script. It is a popular choice for
pipelines and is used extensively for European very long baseline
interferometry (VLBI) network (EVN) calibration.5

SERPent is designed to be a simple, out of the box script. Hence,
Parseltongue is an obvious choice because it has comprehensive
access to AIPS tasks, and is independent of compilers as Python
is the underlying language. For this reason SERPent is written
in Parseltongue as opposed to a low-level language, despite the
performance considerationswhichwill be discussed in Section 4.4.

Fig. 3 shows a flow-diagram of SERPent to aid visualisation
of the process. Green boxes represent SERPent processes, Yellow;
AIPS, Purple; Python modules, Grey; User, Blue; Operating System
and Red; Decision loops.

SERPent6 has now been tested on a number of systems and is
stable.

4. SERPent results

Here we present various before and after plots demonstrating
the reduction and flagging performance of the specific passages
within SERPent. The auto-correlations are flagged by SERPent if
present, along with the Lovell–Mark II baseline, because of the
reasons stated in Section 2. All datasets are listed in Table 2 and
are commissioning e-MERLIN test datasets created purely to test
pipelines and software such as SERPent or are commissioning
Cygnus OB2 Radio Survey (COBRaS) datasets, with the view for first
light on one of e-MERLIN’s legacy projects.

4.1. Lovell stationary scan removal

A bright phase calibrator is observed for the technique of
phase referencing, which is necessary for Very Long Baseline
Interferometry (VLBI), in order to provide complex (amplitude and
phase) solutions. This is achieved by alternating scans of the target
and phase-cal source.

The Lovell telescope has a slow slew speed in comparison
to the other telescopes within the array. This presents a unique
problem to the e-MERLIN array. When phase-referencing it
only participates in every alternative phase-cal scan, remaining
stationary on the target for the other scans. This results in baselines
containing the Lovell telescope to have two different amplitude
levels for the phase calibrator.

In most cases the phase-cal will be brighter than the target
source, thus when the Lovell is observing the phase-cal, the re-
ceived flux will be greater than when the Lovell does not partic-
ipate in the phase-cal scan and remains on the target source.

Fig. 4 shows the visibilities of the phase-cal for the Lovell–
Knockin baseline, plotted in amplitude–time. The three windows
display; top—before any flagging, middle—after flagging using the
Lovell passage, and bottom—after flagging including the zero-level
passage. There are two distinct amplitude levels, the highest is
where the Lovell antenna contributes to the observation and the
lowest is where the Lovell does not contribute.

SERPent detects whether the baseline contains the Lovell
antenna and then executes the Lovell stationary scan passage
appropriately. It defines each scan by checking whether the time

4 Parseltongue: http://www.radionet-eu.org/rnwiki/ParselTongue.
5 EVN Parseltongue pipeline:

http://www.jive.nl/wiki/doku.php?id=parseltongue:grimoire.
6 SERPent software made publically available to download from the following

location: http://www.ucl.ac.uk/star/research/stars_galaxies/cobras/technical/rfi.

http://www.radionet-eu.org/rnwiki/ParselTongue
http://www.jive.nl/wiki/doku.php?id=parseltongue:grimoire
http://www.jive.nl/wiki/doku.php?id=parseltongue:grimoire
http://www.jive.nl/wiki/doku.php?id=parseltongue:grimoire
http://www.jive.nl/wiki/doku.php?id=parseltongue:grimoire
http://www.jive.nl/wiki/doku.php?id=parseltongue:grimoire
http://www.jive.nl/wiki/doku.php?id=parseltongue:grimoire
http://www.jive.nl/wiki/doku.php?id=parseltongue:grimoire
http://www.jive.nl/wiki/doku.php?id=parseltongue:grimoire
http://www.jive.nl/wiki/doku.php?id=parseltongue:grimoire
http://www.ucl.ac.uk/star/research/stars_galaxies/cobras/technical/rfi
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Fig. 3. A logic flow chart of the SERPent process.
duration between each scan is a factor larger than the integration
time. If the average amplitude of all the visibilities within the scan
is consistentwith being a Stationary scan, it is flagged. This passage
is essential for Lovell baselines. If the stationary scans (whichmake
up 50% of the total data) remain, the good phase-cal data would be
treated as RFI in the flagging sequence and therefore flagged.

In Fig. 4 an additional effect can be seen which contributes to
the zero-level amplitudes (see Section 4.2 for details). However, a
careful inspection reveals that this additional zero-level contribu-
tion is part of the ‘on-target’ Lovell scan, and not part of the Lovell
stationary scan. The antennahas started to receive the signal before
the antenna has been properly aligned causing in-scan zero-level
amplitudes to be observed. These are dealtwith in another SERPent
passage (see Section 4.2 on zero-level dropouts).

SERPent’s Lovell Stationary Scan passage removes the time
intervals involved in the stationary scans for all channels within
the tested IF from the NumPy visibility and flag arrays. A separate
Lovell-only flag text file is created, as well as a combined master
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Table 2
SERPent performance test datasets.

Dataset name Size (GB) Frequency
range (GHz)

Band Number of
time-samples

Duration (h) Baselines Bandwidth (MHz) IFs Channels per IF

RFI Test Data:
1436 + 6336 1.6 1.32–1.70 L 5812 0.17 10 384 12 512
1407 + 284 432 MB 1.63–1.69 L 73430 7 1 64 1 128
COBRaS W1 2011:
0555 + 398 2.3 4.41–4.92 C 99149 3 10 512 4 128
COBRaS 20th April 2012:
2033 + 4113 27.4 1.36–1.74 L 389839 20 21 384 12 128
COBRaS 18th July 2012: 97 5.49–6.00 C 1033940 26 21 512 4 512
0555 + 398 10.5 5.49–6.00 C 112631 2 21 512 4 512
1331 + 305 3.2 5.49–6.00 C 34124 0.5 21 512 4 512
1407 + 284 3.4 5.49–6.00 C 35920 0.5 21 512 4 512
2007 + 404 23.7 5.49–6.00 C 252745 12 21 512 4 512
2032 + 411 56.1 5.49–6.00 C 598520 11 21 512 4 512

Every dataset was observed with e-MERLIN with full circular polarisations (RR, LL, RL, LR). A list of associated sources has been provided here for each dataset.
flag text file. This is done by dumping the flag information into a
Python Pickle file, which is later read and combinedwith other files
from other baselines and IFs. This combined flag text file is read
into AIPS and attached to the input data as an AIPS flag extension
table (FG), at the end of the script.

4.2. Zero-level in-scan amplitude dropouts

Early COBRaS commissioning data revealed bad visibilities in
the form of zero-level (visibility amplitudes of or around zero
correlator counts) in-scan amplitudes (example: Figs. 4 and 5),
possibly a result of a system failure, telescope slew errors or the
recording of data before the telescope was actually ‘on-source’.
The zero-level amplitudes reside within scans containing good
data and therefore need their own passage within SERPent to
be flagged because these issues can arise on any baseline. This
zero-level passage considers any visibility within all scans and
it therefore does not matter where these zero-level amplitudes
occur. It is expected that this effect will most likely occur either
at the beginning or end of the scan.

In addition to the zero-level passage described above, it can
be useful to trim the very edges of every scan, because SERPent
can miss a few visibilities which are in transition between the
zero-level dropout and on-source amplitude levels. The AIPS task
QUACK can be implemented for this job for a very short section
of the scan (∼5 s), and is implemented in the COBRaS calibration
pipeline after a full run of SERPent.

Fig. 4 shows the visibilities in an amplitude–time plot, after
the Lovell (middle) and zero-level (bottom) passages have been
performed. It can be seen that both have removed low-level off-
source amplitudes which would have affected calibration and RFI-
mitigation.

Another example of the zero-level in-scan amplitude dropouts
can be seen in Fig. 5 which shows the COBRaS July 2012 C-band
dataset (source: 0555 + 398, baseline: Mark II–Darnhall (2–8)).
This dataset contains zero-level dropouts at the beginning and end
of the scan and also contains a few minutes of the previous source
scan. This reinforces the idea that the zero-level dropouts result
from telescope slews or from the correlation. Fig. 5 demonstrates
that SERPent’s zero-level passage can deal with dropouts at the
beginning or end of the scan after the successful flagging of these
low amplitudes.

4.3. RFI-mitigation sequence

As discussed in Section 1, RFI originates from a variety of
sources. Some of the origins of RFI for e-MERLIN are known
e.g. CCTV interference in L-band (1376 MHz), but others can be
unpredictable, and neither are mitigated at the antenna or at the
correlator level before data processing.
SERPent has been tested on both L-band (1.3–1.8 GHz) and
C-band (4–8 GHz) observations (see Table 2 for datasets) which
contain different amounts and types of RFI. L-band is typically
noiser with both broadband and narrowband RFI common in
observations, whereas C-band is generally RFI quiet with some
narrow RFI common (though broadband RFI has been seen).

The edges of the IFs often contain noise as a result of the reduced
response of the bandpass. SERPent can detect and flag this because
it behaves in the same way RFI does. We now present a series of
before and after figures which depict SERPent’s flagging ability on
a range of e-MERLIN datasets.

Fig. 6 displays the COBRaS C-band (centred on 5.49 GHz) 18th
July 2012 data, with the visibilities sorted in time along the y-axis
and channels in frequency along the x-axis, with all four IFs side
by side. There is some weak narrowband and broadband RFI in
the central channels and some noise present at the edges of IFs
1 and 4. Fig. 7 shows the same data after SERPent flagging. All of
the narrowband and broadband RFI and IF edge noise has been
detected and successfully flagged. This level of RFI detection and
flagging is more accurate and delicate than visual, manual flagging
can achieve.

The COBRaS 20th April 2012 L-band (centred on 1.56 GHz,
with 12 IFs) datasets provide a greater test of SERPent’s flagging
capabilities because of the increased incidence of RFI. Once again
the presence of narrowband and broadband RFI can be seen in
Fig. 8. There is in fact more RFI present at lower levels, but this
cannot be seen in the spectral window before flagging. Note, IF 9
(1.61–1.64 GHz) has been automatically flagged by the correlator,
before any processing of the data has been done.

Fig. 9 shows the L-band data following flagging by SERPent,
again demonstrating the intricate nature of RFI detectionby finding
strong and weak RFI, as well as RFI which encompasses both large
and small areas in the time–frequency space. Flagging to this level
of accuracy on large datasets by hand would take an unfeasible
amount of time.

There are examples of more exotic RFI in the commissioning
datasets from e-MERLIN. The noisy COBRaS 2011 dataset at
frequency 4.412 GHz and source: 0555 + 398 shown in Fig. 1,
demonstrates some ‘wiggly’ RFI which varied over time and
frequency. As stated before, thresholding methods are the most
robustway to detect these unusual types of RFI, and Fig. 10 displays
how SERPent can deal with RFI of this nature.

One further example of some peculiar multiple RFI found in
e-MERLIN commissioning datasets can be seen from the source
1407 + 284, on the baseline 1–8 (Lovell–Darnhall) in Fig. 11. This
RFI, of unknown origin, seems to drift in frequency over time
and not necessarily in a constant direction. The before and after
time–frequency plot in Fig. 11 shows the complex shape of this RFI
and how SERPent again has successfully flagged all of it.



60 L.W. Peck, D.M. Fenech / Astronomy and Computing 2 (2013) 54–66
Fig. 4. Amplitude–time plot with correlator counts on the y-axis and time on the
x-axis, displaying a single IF and polarisation for the phase-cal source: 2007 + 404,
baseline 1–5 (Lovell–Knockin) from the COBRaS July 2012 dataset. The top figure
shows the visibilities before any flagging is done. The two distinct amplitude
levels can be seen and the Lovell and zero-level dropouts are present. The middle
figure shows the same visibilities after the Lovell stationary scan passage. The
unconnected dropouts have all been flagged. The bottom figure shows the same
visibilities after the Lovell and zero-level dropout passages. Both types of dropouts
have been successfully flagged.
Fig. 5. Amplitude–time plot with correlator counts on the y-axis and time in hours
on the x-axis, of the source: 0555 + 398, baseline Mark II–Darnhall (2–8) from a
single IF and polarisation from the COBRaS July 2012 dataset. The top figure shows
the visibilities before the zero-level passage with two distinct amplitude levels at
the beginning and end of the observation. The bottom figure shows the visibilities
after the zero-level passage has been executed. The previous zero-level dropouts
have been successfully removed.

These are only a small selection of examples from the commis-
sioning e-MERLIN archives, but demonstrate the unpredictable na-
ture of RFI and how thresholding detectionmethods can find RFI of
any morphology. SERPent can easily convert this information into
an AIPS readable FG table which is automatically appended to the
input data in AIPS as part of the script.

4.4. Computational performance

One of the important criterias for automated flaggers is
computational performance. We have analysed the computational
performance of SERPent on a number of computer systems, the
details of which are given in Table 3. The difference in number
of processors, Central Processing Units (CPUs) per processor and
memory size covers a range of modest specifications available to
institutions across the world (please refer to Table 3 for details).

To increase the computational performance, SERPent is paral-
lelised by splitting the data into ‘jobs’ which are evenly distributed
across a number of CPUs. SERPent is parallelised in both baselines
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Table 3
Computer systems.

Computer name Memory (GB) Processor (GHz) NCPUs

Leviathan (1 node)a 100 3.20 16
Kriab 40 2.93 24
Cornish1b 16 3.20 8
Meganc 48 2.40 16

Systems at:.
a University College London, UK.
b University of Manchester, UK.
c Netherlands Institute for Radio Astronomy (ASTRON).

and IFs to maximise the even spread across CPUs and uses a user-
designated number of CPUs specified in the input file. Our initial
tests on modest data sizes reveal a significant increase in perfor-
mance. These tests also show that the processing time scales lin-
early with the data volume.

Here we assess the effects of memory and the number of
CPUs (NCPUs) used on the computational performance, by testing
SERPent on a small dataset; RFI Test Data: 1436 + 6336, 1.63 GB
(see Table 2 for details). Fig. 12 portrays the relative performance
ratio to a single CPU on the same system. All systems have linear
relations with a peak CPU efficiency at around 8 CPUs. At this point
adding more CPUs still increases the performance but at a slower
rate. We can infer that using 16 CPUs on this dataset has increased
the performance by a factor ∼7 compared to using only 1 CPU on
the same system. Runs on other datasets gave similar performance
results.

The tail-off in Fig. 12 may result from this particular dataset,
where a few IF-baseline combos suffer from severe RFI (L-band
observations). These jobs take more time to process, and as the
number of jobs per CPU decreases, the portion of total time taken
becomes biased towards the time taken by these ‘heavy’ jobs.
This is because all other CPUs have finished processing and are
waiting idle whilst the CPU with the ‘heavy’ job is still processing.
Therefore, the performance relative to 1 CPU is affected by these
jobs. However, the performance relative to 1 CPU is expected to
increase further for a dataset with a higher number of total jobs
(where the data has been distributed in a larger set of smaller
segments), because the influence on the total computational
time by any lengthy jobs is minimised. This, and the (random)
distribution of jobs, is the reason a turnover after 8 CPUs is seen.
This could also explain the fluctuations in performance on certain
systems after 8 CPUs.

Increasing the amount of memory each CPU has also increased
the computational performance, albeit by a smaller factor than the
parallelisation. Comparing computers with the same processing
speed (Leviathan and Cornish1 both have 3.2 GHz processors),
Leviathan has 6.25 GB memory per CPU, and Cornish1 has 2 GB
memory per CPU. Fig. 13 shows that the amount of memory per
CPU decreases in significance as the NCPUs increases from a factor
of 1.22 for 1 CPU to 1.14 when running on 8 CPUs. This is because
the effect of parallelisation on performance is greater than the
benefit of having extra memory per CPU. This shows that the
limiting factor of running SERPent on interferometric datasets is
the shear volume of data that needs processing over a number of
CPUs and not the result of a lack of memory.

The raw (unaveraged) COBRaS July 2012 C-band data (97 GB)
takes 20 h to process with SERPent, yielding a flagging rate of
∼110 GB/day. When the same dataset is averaged to 25 GB,
SERPent takes∼6 hwith Leviathan (100 GBMemory and 16 CPUs),
which is consistent with linear scaling in data size and time. This
approximately results in a processing rate of 6.9 GBCPU−1 day−1.
These extrapolations may vary in actual performance due to other
factors such as the number of jobs SERPent creates, which is
dependent on the number of baselines and IFs in any observation.
The amount of RFI will also affect the performance, as less RFI
means SERPent can skip flagging runs due to kickout clauses
in the flagging sequence etc. However, these remain reasonable
estimates for the predicted performances.

Full e-MERLIN Legacy observations will grow to data sizes of
∼TB and contain up to 20 baselines (minus Lovell–Mark II baseline
and auto-correlations) with (up to) 16 IFs for full 2 GHz bandwidth
for C-band, and (up to) 12 IFs for full 512 MHz bandwidth for
L-band. With these datasets SERPent will create 320 and 240
‘jobs’ for C and L-band respectively. It is clear from Fig. 12, that
the plateau at around 7 results from the factorisation of the
number of jobs (120 for this test dataset) and the NCPUs on
each computer system. With the larger job list, it is expected
that even larger increases in computational performances will be
achieved.

To process a 1 TB dataset in a day, the user will require ∼145
CPUsprocessing at 6.9GBCPU−1 day−1 (rate taken fromprocessing
COBRaS July 2012 C-band dataset). As discussed before, further
increase in the number of CPUs will not result in an increase in
performance because the job/CPU factor is the limitation in the
parallelisation for the COBRaS July 2012 C-band dataset. However,
an increase in the number of jobs because of an increase in the
number of IFs for full e-MERLIN Legacy data will provide an
increase on the factor 7 seen in Fig. 12 from the parallelisation.

It would be simple to parallelise even further in polarisations, as
currently every polarisation for each baseline and IF are contained
within the same ‘job’ but processed separately by the flagging
sequence. This would potentially increase the number of jobs by a
factor of 4 (for full polarisation studies). However, only computers
with a high number of CPUs (NCPUs > 100) would predominantly
benefit from this, in addition to the increase in the number of jobs
resulting from the increase in bandwidth.

In the scope of the COBRaS e-MERLIN legacy project (at
University College London, P.I. Prof. Raman Prinja), the Leviathan
computer system has 4 nodes (each with 100 GB Memory and 16
CPUs), constituting a total of 64 CPUs. This enables∼440 GB day−1

of flagging to be processed (and possibly more with the increase in
bandwidth and jobs), meaning a TB dataset would be processed in
∼2.25 days. This is a reasonable time scale for an automated script
operating on a stable, full capacity instrument and a large survey
such as COBRaS.

5. Conclusions

SERPent automates the reduction, flagging and preparation
procedures of post-correlated radio interferometric datasets,
specifically those from e-MERLIN. SERPent is in the process of
being tested on EVN and Global VLBI datasets, showing good early
results. This was done with Parseltongue, a common scripting
language utilised prominently with the EVN, so that the user could
start flagging the data which have been loaded within the AIPS
environment with as little effort as possible. SERPent can be easily
added to the existing and future pipelines.

The entire SERPent package consists of only two text files: the
main SERPent code to be executed, and a user input file, designed
so the user does not have to interact with the main body of code,
and so the input parameters are obvious and intuitive to set.
This gives the freedom to the user to pursue their own flagging
philosophy, i.e. whether theywant to be aggressive or conservative
with the flagging, but also includes a set of default inputs which
will perform well on most datasets.

SERPent is designed to be run on ‘high-end desktop’ computer
systems. The examples in this paper used a system with 16
CPUs and 100 GB of Memory (Leviathan) and was flagging
at ∼110 GB day−1. This throughput will increase with full e-
MERLIN legacy data as the number of ‘jobs’ will increase with full
bandwidth, providing a higher throughput with a higher number
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Fig. 6. Time–frequency plot of the visibilities of the target field: 2032 + 411 from the COBRaS 18th July 2012 dataset. 4 IFs are plotted together with the bandwidth of
512MHz from 5.49 to 6.00 GHz, from the Defford–Cambridge baseline. Weak narrowband and broadband RFI are present and noise in the edges of some IFs can also be seen.
Fig. 7. Time–frequency plot of the visibilities of the target field: 2032 + 411 from the COBRaS 18th July 2012 dataset. 4 IFs are plotted together with the bandwidth of
512 MHz from 5.49 to 6.00 GHz, from the Defford–Cambridge baseline. All of the visible narrowband and broadband RFI and the noise in the edges of IFs 1 and 4 has been
flagged by SERPent.
of CPUs. It is unlikely that one will be able to process full e-
MERLIN legacy data on a modest desktop computer. Although
obvious advantages in increased computer facilities and real world
limitations on smaller systems are apparent, SERPent can be used
by institutions without access to super computer clusters.
Section 4 has demonstrated that SERPent can reduce and flag
current e-MERLIN commissioning data, which will have many
more complications than a stable fully commissioned e-MERLIN
including the Legacy datasets which will commence in the future.
The benefit of using real data instead of simulated data is obvious,



L.W. Peck, D.M. Fenech / Astronomy and Computing 2 (2013) 54–66 63
Fig. 8. Time–frequency plot of the visibilities of the target field: 2033 + 411 from the COBRaS 20th April 2012 dataset. 12 IFs are plotted together with the bandwidth
of 384 MHz from 1.36 to 1.74 GHz, from the Defford–Darnhall baseline. A variety of narrowband and broadband RFI can be seen, and many more weaker RFI are present
but are below the current contrast levels, once the stronger visible RFI is removed, the weaker RFI is revealed. Note: IF 9 has been flagged by the online correlator before
post-correlation reduction and processing.
Fig. 9. Time–frequency plot of the visibilities of the target field: 2033 + 411 from the COBRaS 20th April 2012 dataset. 12 IFs are plotted together with the bandwidth of
384 MHz from 1.36 to 1.74 GHz, from the Defford–Darnhall baseline. A lot of strong narrowband and broadband RFI has successfully been flagged, along with weaker RFI
which was not visible in Fig. 8.
and SERPent is now part of the official pipeline for e-MERLIN, used
at Jodrell Bank and other international groups.

6. Discussions

When constructing an automated flagging script, the flagging
philosophy has to be considered and decided. Whilst flagging
all of the RFI and flagging none of the data is the idealistic
scenario, evenwith implementing the SumThresholdMethodwith
an extremely low false-positive detection percentage, either some
RFI will remain or some good data will be flagged. This is the
reality of working with real datasets from imperfect instruments
and environments.

There are some philosophies which state ‘no data is better than
bad data’, promoting themore zealous and aggressive flagging, and
others who would rather flag 80%–90% of RFI and have some of
the weaker, lesser RFI remain. Obviously both philosophies cannot
be accommodated in total automation, therefore SERPent has the
option for the user to decide some of the flagging parameters.
These parameters include the aggressiveness, subset sizes and
kickout thresholds. The AIPS REFLG task has also been seen to over-
flag at times, although it is necessary to condense the number of
rows in the AIPS FG table.

The computational performance of SERPent is probably the area
which requiresmost improvement. It currently flags∼110 GB/day
with 16 CPUs, which is reasonable for commissioning e-MERLIN
datasets. However, for the fully upgraded e-MERLIN this will be
slow. It is obvious that including more CPUs could solve this prob-
lem, as 16 CPUs is still very modest in modern computing terms,
however this is merely shifting the problem onto hardware (and
is not very constructive). The flagging sequence makes two full
passes through the SumThreshold method (the original AOflag-
ger Offringa et al., 2010a makes 5 passes) in order to maximise
RFI detections, and skips these passes if the threshold level is low
enough. This is currently the limiting factor in terms of perfor-
mance. Reducing this to one full pass would speed SERPent up con-
siderably at the expense of RFI-mitigation performance. Note that
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Fig. 10. Time–frequency plot of the visibilities of the source: 0555 + 398 from the
COBRaSW1 2011 dataset. A single IF and RR polarisation is shownwith a frequency
range from 4.54 to 4.66 GHz from the baseline Knockin–Pickmere. The before image
can be seen in Fig. 1. After a run of SERPent, the ‘wiggly’ RFI has been flagged
successfully.

the amount of RFI also affects computational performance, because
more RFI means more full runs completed within SERPent, and
less RFI means more cycles are skipped due to the invoked kickout
clauses implemented in the flagging sequence to stop over flagging
and increase speed performance.

Comparing SERPent with flagging implementations on the JVLA
and LOFAR, the data volume per processing time appears to be
slower. In the casewith LOFAR, the AOflagger has beenwritten in a
low-level language (C++) and includes specific compiler settings
to achieve the optimal performance (Offringa, 2012). In addition,
the AOflagger is heavily parallelised over multiple cores and nodes
on a super cluster, vectorised, and is part of the LOFAR pipeline
which fully reduces and calibrates observations for users. This is
different in the case of e-MERLIN, where the data will still be in a
raw format when presented to the user, who will not have access
to the same computing facilities as LOFAR. There is work currently
being conducted on a general e-MERLIN pipeline, and SERPent
is the flagging software implemented for the reduction passage.
However, this is only a general pipeline and does not account for
themany calibration techniques andmethods needed for themany
diverse projects e-MERLIN will observe for.

In the case of the JVLA, there is no implementation that is
as sophisticated in mitigating RFI as the AOflagger or SERPent
methods. The CASA software package is the main choice for the
JVLA, and all developments are focused to this package. On the
contrary, e-MERLIN currently favours AIPS because of the fringe
fitting abilities within the program needed to calibrate e-MERLIN
data.

According to the received feedback, SERPent can be rather ag-
gressive at times. Whilst differing flagging philosophies can ac-
count for these views, it should also be considered that e-MERLIN
is still a commissioning interferometer and thus a changing and
unstable system. Every dataset is unique but can also represent e-
MERLIN in a new commissioning stage. We personally have expe-
rienced filter issues with some of the COBRaS April 2012 L-band
datasets which have since been resolved, but caused amplitude
level issues which then affected RFI-mitigation performance. This
is thenature of commissioning instruments, particularly in the case
of e-MERLIN, a heterogeneous arraywhose antennas have other re-
sponsibilities outside of e-MERLIN (Lovell and Cambridge partake
in EVN observations). Compared to other, dedicated arrays such as
the VLA/JVLA and ALMA, both homogeneous (ALMA has 2 types
Fig. 11. Time–frequency plot of the visibilities of the source: 1407 + 284. A single
IF and RR polarisation is shown with a frequency range from 1.62 to 1.69 GHz from
the baseline Lovell–Darnhall. Left; is the before image where the RFI varying in
amplitude over time and frequency can be clearly seen, Right; is the clean, post-
SERPent flagging image. Note that the contrast levels of the normal (unaffected)
visibilities are different in each plot due to the influence of the RFI skewing the
contrast levels.

of antennas) arrays which have been modelled extensively before
commissioning. This provides a much smoother transition from
the commissioning to fully-commissioned phases for the JVLA and
ALMA. These factors should not be over looked with respect to
e-MERLIN commissioning, because both hardware and software
changes make maintaining external software such as SERPent dif-
ficult.

Furthermore, the tweaking of SERPent flagging parameters
may still yet yield the most optimised settings for both flagging
and speed performances. The best time to conduct and hone
these settings will be once e-MERLIN has settled and finished its
commissioning phase.

As with all practical software, SERPent has limitations. The
only limitation in detecting Lovell Stationary scans (Section 4.1)
would be when the phase calibrator is weak and of a similar
amplitude level to the dropout. Since the code finds individual
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Fig. 12. The speed relations of running SERPent on multiple CPUs on a range of
computers relative to the performance of a single CPU on the same system. Even
at high number of CPUs there are significant gains in performance which should
increase further beyond 24 CPUs with datasets with a greater number of jobs
available.

Fig. 13. The performance relations of Leviathan/ Cornish1, both with 3.2 GHz
processors. As the number of CPUs increases the impact of Leviathan’s larger
memory per CPU on computational performance decreases.

scans and makes comparisons with the previous scan this
should still function correctly. The zero-level dropout passage
(Section 4.2) also has obvious limitations. In the COBRaS July 2012
C-band dataset the Cambridge antenna stopped collecting data
during ∼75% of the observation of the target source and phase
calibrator (phase referencingmode).Whilst this represents similar
morphology to the zero-level dropout (which are mostly slew/
timing errors) when three quarters of the data is bad, it is hard to
automatically flag these visibilities without comprising the rest of
the data. It is reasonable to assume that a fully stable e-MERLIN
system will provide data without such problems as a minimum
requirement of data quality assurance.

Lastly, we discuss the limitations with the RFI-mitigation
sequence (Section 4.3) in SERPent. Setting the number of full
SumThreshold flagging runs to two will increase flagging accuracy
at the cost of speed as discussed earlier. In terms of flagging
limitations, SERPent has a limit of ∼45% of the sample population
being RFI (or statistical outliers) for any one SumThreshold run.
This results fromusing theMedianAbsoluteDeviation (Section 3.2)
as a robust estimate of variance (Fridman, 2008). Hence, the
amount of RFI SERPent can dealwith depends on the strength of RFI
and howmany SumThreshold runs are implemented. For example,
if 40% of RFI exists for the first full SumThreshold run and another
40% exists in the remaining sample at a lower amplitude level,
SERPent can theoretically deal with a total of 60% of RFI in the
beginning sample. This is dependent on the RFI being represented
at multiple amplitude levels, and with two full SumThreshold
flagging runs. Even more RFI could be mitigated, if more full runs
are implemented.

SERPent has yet to be tested on spectral-line observations or
pulsar/transient observations. The methodology of SERPent would
suggest that any spectral-linewould risk being identified as RFI, de-
pending on the full width half maximum (FWHM) and/or strength
of the line profile. If the frequency and redshift of the spectral line
is known, then it is possible to create amask for frequencies where
the spectral line resides. These frequencies would then be pro-
tected from themain RFI flagging sequence and perhaps have their
own flagging passage to remove RFI which may populate the same
frequencies as the spectral-line.

There is much scope for future work and improvements to
SERPent and automated scripts for radio interferometry, with the
SKA and its pathfinders (MeerKAT and ASKAP) on the horizon. As
the datasets become larger, the necessity of automated scripts to
perform the majority of the reduction and calibration becomes
essential. SERPent currently interacts with AIPS by reading the
visibilities into Python NumPy arrays and then creating the FG
flag tables which are read back into AIPS. Since all of the flagging
and processing is conducted within the NumPy environment, it
is possible that SERPent could be adapted to work with CASA (a
more recently developed software package for radio astronomy
data reduction) datasets with minor adaptations.

For SERPent, any futureworkwill be concentrated on stabilising
the flagging parameters for a stable e-MERLIN system, and
improving the computational performance.
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