17 research outputs found

    Spatially anisotropic S=1 square-lattice antiferromagnet with single-ion anisotropy realized in a Ni(II) pyrazine- n,n′ -dioxide coordination polymer

    Get PDF
    The Ni(NCS)2(pyzdo)2 coordination polymer is found to be an S=1 spatially anisotropic square lattice with easy-axis single-ion anisotropy. This conclusion is based upon considering in concert the experimental probes x-ray diffraction, magnetic susceptibility, magnetic-field-dependent heat capacity, muon-spin relaxation, neutron diffraction, neutron spectroscopy, and pulsed-field magnetization. Long-range antiferromagnetic (AFM) order develops at TN=18.5K. Although the samples are polycrystalline, there is an observable spin-flop transition and saturation of the magnetization at ≈80T. Linear spin-wave theory yields spatially anisotropic exchanges within an AFM square lattice, Jx=0.235meV, Jy=2.014meV, and an easy-axis single-ion anisotropy D=-1.622meV (after renormalization). The anisotropy of the exchanges is supported by density functional theory

    Nafion® as advanced immobilisation substrate for the voltammetric analysis of electroactive microparticles: the case of some artistic colouring agents

    Get PDF
    Voltammetry of microparticles is applied to characterise and to identify solid analytes of interest in the field of cultural heritage. Nafion® is used for the immobilisation of solid microparticles onto the surface of a glassy carbon electrode by exploiting the deposition onto the electrode surface of a micro-volume of a suspension of the microsample in polymeric solution. Cyclic voltammetry and square wave voltammetry are applied to characterise and to identify the microparticles immobilised in the Nafion® coating. The analyte studied in this work is Prussian Blue as a typical inorganic pigment, with a relatively simple electrochemical behaviour. The proposed method is applied to a sample of Venetian marmorino plaster. The performance of Nafion® for this analysis is compared with that of the polymer Paraloid B72

    Strong cooperative coupling of pressure-induced magnetic order and nematicity in FeSe

    Get PDF
    A hallmark of the iron-based superconductors is the strong coupling between magnetic, structural and electronic degrees of freedom. However, a universal picture of the normal state properties of these compounds has been confounded by recent investigations of FeSe where the nematic (structural) and magnetic transitions appear to be decoupled. Here, using synchrotron-based high-energy x-ray diffraction and time-domain Moessbauer spectroscopy, we show that nematicity and magnetism in FeSe under applied pressure are indeed strongly coupled. Distinct structural and magnetic transitions are observed for pressures, 1.0 GPa <= p <= 1.7 GPa, which merge into a single first-order phase line for p >= 1.7 GPa, reminiscent of what has been observed, both experimentally and theoretically, for the evolution of these transitions in the prototypical doped system, Ba(Fe[1-x]Co[x])2As2. Our results support a spin-driven mechanism for nematic order in FeSe and provide an important step towards a universal description of the normal state properties of the iron-based superconductors.Comment: (14 pages, 4 figures
    corecore