35 research outputs found
18F-fluoro-deoxy-glucose focal uptake in very small pulmonary nodules: fact or artifact? Case reports
ABSTRACT: BACKGROUND: F-fluoro-deoxy-glucose (18F-FDG) positron emission tomography integrated/combined with computed tomography (PET-CT) provides the best diagnostic results in the metabolic characterization of undetermined solid pulmonary nodules. The diagnostic performance of 18F-FDG is similar for nodules measuring at least 1 cm and for larger masses, but few data exist for nodules smaller than 1 cm. CASE PRESENTATION: We report five cases of oncologic patients showing focal lung 18F-FDG uptake on PET-CT in nodules smaller than 1 cm. We also discuss the most common causes of 18F-FDG false-positive and false-negative results in the pulmonary parenchyma. In patient 1, contrast-enhanced CT performed 10 days before PET-CT did not show any abnormality in the site of uptake; in patient 2, high-resolution CT performed 1 month after PET showed a bronchiole filled with dense material interpreted as a mucoid impaction; in patient 3, contrast-enhanced CT performed 15 days before PET-CT did not identify any nodules; in patients 4 and 5, contrast-enhanced CT revealed a nodule smaller than 1 cm which could not be characterized. The 18F-FDG uptake at follow-up confirmed the malignant nature of pulmonary nodules smaller than 1 cm which were undetectable, misinterpreted, not recognized or undetermined at contrast-enhanced CT. CONCLUSION: In all five oncologic patients, 18F-FDG was able to metabolically characterize as malignant those nodules smaller than 1 cm, underlining that: 18F-FDG uptake is not only a function of tumor size but it is strongly related to the tumor biology; functional alterations may precede morphologic abnormalities. In the oncologic population, especially in higher-risk patients, PET can be performed even when the nodules are smaller than 1 cm, because it might give an earlier characterization and, sometimes, could guide in the identification of alterations missed on CT
Cdh11 Acts as a Tumor Suppressor in a Murine Retinoblastoma Model by Facilitating Tumor Cell Death
CDH11 gene copy number and expression are frequently lost in human retinoblastomas and in retinoblastomas arising in TAg-RB mice. To determine the effect of Cdh11 loss in tumorigenesis, we crossed Cdh11 null mice with TAg-RB mice. Loss of Cdh11 had no gross morphological effect on the developing retina of Cdh11 knockout mice, but led to larger retinal volumes in mice crossed with TAg-RB mice (pβ=β0.01). Mice null for Cdh11 presented with fewer TAg-positive cells at postnatal day 8 (PND8) (pβ=β0.01) and had fewer multifocal tumors at PND28 (pβ=β0.016), compared to mice with normal Cdh11 alleles. However, tumor growth was faster in Cdh11-null mice between PND8 and PND84 (pβ=β0.003). In tumors of Cdh11-null mice, cell death was decreased 5- to 10-fold (p<0.03 for all markers), while proliferation in vivo remained unaffected (pβ=β0.121). Activated caspase-3 was significantly decreased and Ξ²-catenin expression increased in Cdh11 knockdown experiments in vitro. These data suggest that Cdh11 displays tumor suppressor properties in vivo and in vitro in murine retinoblastoma through promotion of cell death
Differential gene expression in pituitary adenomas by oligonucleotide array analysis.
OBJECTIVES: Microarray technology allows for the expression profile of many thousands of genes to be quantified at the same time, and has resulted in novel discoveries about the tumour biology of a number of cancers. We sought to do this in pituitary adenomas, the most common intracranial neoplasm. METHODS: Affymetrix GeneChip HG-U133A oligonucleotide arrays covering 14 500 well-characterised genes from the human genome were used to study pooled RNA for each of the four major pituitary adenoma subtypes. Individual gene-expression levels in the tumours were compared relative to the expression profile in normal pooled pituitary RNA. Three differentially expressed genes with potential importance in tumourigenesis were chosen for validation by real-time quantitative PCR on the original tumours and on an additional 26 adenomas. RESULTS: Bioinformatic analysis showed that 3906 genes and 351 expressed sequence tags were differentially expressed among all pituitary tumour subtypes. Lysosomal-associated protein transmembrane- 4-beta (LAPTM4B), a novel gene upregulated in hepatocellular carcinoma, was significantly over-expressed in adrenocorticotrophin (ACTH)-secreting adenomas and non-functioning pituitary adenomas (NFPAs). Bcl-2-associated athanogene (BAG1), an anti-apoptotic protein found at high levels in a number of human cancers, was significantly over-expressed in growth hormone-secreting and prolactin-secreting adenomas and NFPAs. The cyclin-dependent kinase inhibitor p18, in which murine gene deletion has been shown to produce pituitary ACTH cell hyperplasia and adenomas, was significantly under-expressed in ACTH-secreting adenomas. CONCLUSIONS: Expression array analysis of pituitary adenomas using the Affymetrix GeneChip HG-U133A arrays appears to be a valid method of identifying genes that may be important in tumour pathogenesis