14 research outputs found

    Conditional Transgenesis Using Dimerizable Cre (DiCre)

    Get PDF
    Cre recombinase is extensively used to engineer the genome of experimental animals. However, its usefulness is still limited by the lack of an efficient temporal control over its activity. We have recently developed a conceptually new approach to regulate Cre recombinase, that we have called Dimerizable Cre or DiCre. It is based on splitting Cre into two inactive moieties and fusing them to FKBP12 (FK506-binding protein) and FRB (binding domain of the FKBP12-rapamycin associated protein), respectively. These latter can be efficiently hetero-dimerized by rapamycin, leading to the reinstatement of Cre activity. We have been able to show, using in vitro approaches, that this ligand-induced dimerization is an efficient way to regulate Cre activity, and presents a low background activity together with a high efficiency of recombination following dimerization. To test the in vivo performance of this system, we have, in the present work, knocked-in DiCre into the Rosa26 locus of mice. To evaluate the performance of the DiCre system, mice have been mated with indicator mice (Z/EG or R26R) and Cre-induced recombination was examined following activation of DiCre by rapamycin during embryonic development or after birth of progenies. No recombination could be observed in the absence of treatment of the animals, indicating a lack of background activity of DiCre in the absence of rapamycin. Postnatal rapamycin treatment (one to five daily injection, 10 mg/kg i.p) induced recombination in a number of different tissues of progenies such as liver, heart, kidney, muscle, etc. On the other hand, recombination was at a very low level following in utero treatment of DiCreĂ—R26R mice. In conclusion, DiCre has indeed the potentiality to be used to establish conditional Cre-deleter mice. An added advantage of this system is that, contrary to other modulatable Cre systems, it offers the possibility of obtaining regulated recombination in a combinatorial manner, i.e. induce recombination at any desired time-point specifically in cells characterized by the simultaneous expression of two different promoters

    Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development.

    Get PDF
    Cardiac development arises from two sources of mesoderm progenitors, the first heart field (FHF) and the second (SHF). Mesp1 has been proposed to mark the most primitive multipotent cardiac progenitors common for both heart fields. Here, using clonal analysis of the earliest prospective cardiovascular progenitors in a temporally controlled manner during early gastrulation, we found that Mesp1 progenitors consist of two temporally distinct pools of progenitors restricted to either the FHF or the SHF. FHF progenitors were unipotent, whereas SHF progenitors were either unipotent or bipotent. Microarray and single-cell PCR with reverse transcription analysis of Mesp1 progenitors revealed the existence of molecularly distinct populations of Mesp1 progenitors, consistent with their lineage and regional contribution. Together, these results provide evidence that heart development arises from distinct populations of unipotent and bipotent cardiac progenitors that independently express Mesp1 at different time points during their specification, revealing that the regional segregation and lineage restriction of cardiac progenitors occur very early during gastrulation.This is the author's accepted manuscript and will be under embargo until the 24th of February 2015. The final version is published by NPG in Nature Cell Biology here: http://www.nature.com/ncb/journal/v16/n9/full/ncb3024.html

    Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development

    No full text
    The correct patterning of vertebrate skeletal elements is controlled by inductive interactions. Two vertebrate hedgehog proteins, Sonic hedgehog and Indian hedgehog, have been implicated in skeletal development. During somite differentiation and limb development, Sonic hedgehog functions as an inductive signal from the notochord, floor plate and zone of polarizing activity. Later in skeletogenesis, Indian hedgehog functions as a regulator of chondrogenesis during endochondral ossification. The vertebrate Gli zinc finger proteins are putative transcription factors that respond to Hedgehog signaling. In Drosophila, the Gli homolog cubitus interruptus is required for the activation of hedgehog targets and also functions as a repressor of hedgehog expression. We show here that Gli2 mutant mice exhibit severe skeletal abnormalities including cleft palate, tooth defects, absence of vertebral body and intervertebral discs, and shortened limbs and sternum. Interestingly, Gli2 and Gli3 mutant mice exhibit different subsets of skeletal defects indicating that they implement specific functions in the development of the neural crest, somite and lateral plate mesoderm derivatives. Although Gli2 and Gli3 are not functionally equivalent, double mutant analysis indicates that, in addition to their specific roles, they also serve redundant functions during skeletal development. The role of Gli2 and Gli3 in Hedgehog signaling during skeletal development is discussed.link_to_OA_fulltex

    Tracing the lineage of tracing cell lineages

    No full text
    The study of cell lineages has been, and remains, of crucial importance in developmental biology. It requires the identification of a cell or group of cells and of all of their descendants during embryonic development. Here, we provide a brief survey of how different techniques for achieving this have evolved over the last 100 years

    Multiple origins of Cajal-Retzius cells at the borders of the developing pallium

    No full text
    Cajal-Retzius cells are critical in cortical lamination, but very little is known about their origin and development. The homeodomain transcription factor Dbx1 is expressed in restricted progenitor domains of the developing pallium: the ventral pallium (VP) and the septum. Using genetic tracing and ablation experiments in mice, we show that two subpopulations of Reelin(+) Cajal-Retzius cells are generated from Dbx1-expressing progenitors. VP- and septum-derived Reelin(+) neurons differ in their onset of appearance, migration routes, destination and expression of molecular markers. Together with reported data supporting the generation of Reelin(+) cells in the cortical hem, our results show that Cajal-Retzius cells are generated at least at three focal sites at the borders of the developing pallium and are redistributed by tangential migration. Our data also strongly suggest that distinct Cajal-Retzius subtypes exist and that their presence in different territories of the developing cortex might contribute to region-specific properties
    corecore