47 research outputs found

    DIA1R Is an X-Linked Gene Related to Deleted In Autism-1

    Get PDF
    Background: Autism spectrum disorders (ASDs) are frequently occurring disorders diagnosed by deficits in three core functional areas: social skills, communication, and behaviours and/or interests. Mental retardation frequently accompanies the most severe forms of ASDs, while overall ASDs are more commonly diagnosed in males. Most ASDs have a genetic origin and one gene recently implicated in the etiology of autism is the Deleted-In-Autism-1 (DIA1) gene. Methodology/Principal Findings: Using a bioinformatics-based approach, we have identified a human gene closely related to DIA1, we term DIA1R (DIA1-Related). While DIA1 is autosomal (chromosome 3, position 3q24), DIA1R localizes to the X chromosome at position Xp11.3 and is known to escape X-inactivation. The gene products are of similar size, with DIA1 encoding 430, and DIA1R 433, residues. At the amino acid level, DIA1 and DIA1R are 62 % similar overall (28 % identical), and both encode signal peptides for targeting to the secretory pathway. Both genes are ubiquitously expressed, including in fetal and adult brain tissue. Conclusions/Significance: Examination of published literature revealed point mutations in DIA1R are associated with X-linked mental retardation (XLMR) and DIA1R deletion is associated with syndromes with ASD-like traits and/or XLMR. Together, these results support a model where the DIA1 and DIA1R gene products regulate molecular traffic through the cellular secretory pathway or affect the function of secreted factors, and functional deficits cause disorders with ASD-lik

    Association of the NRG1 gene and schizophrenia: a meta-analysis.

    No full text
    We investigated the association of the NRG1 gene and schizophrenia using meta-analytic techniques, combining all published data while restricting our analysis to studies investigating the most commonly reported single marker (SNP8NRG221533). We also investigated whether ancestry (European vs East Asian) and study design (family-based vs case-control) moderated any association. We found no evidence for an association of SNP8NRG221533 with schizophrenia, and significant between-study heterogeneity, which persisted when family-based studies were combined separately. However, when haplotype-based P-values were combined, there was evidence in support of an association of NRG1 with schizophrenia, and no evidence of between-study heterogeneity. Our meta-analysis provides support for the association of NRG1 with schizophrenia, but indicates that firmly establishing the role of NRG1 gene in schizophrenia by genetic association requires much larger sample sizes than have hitherto been reported. Association analyses and replications should take place at the level of the gene, rather than at the level of SNP, haplotype, or functional variant. Meta-analysis would then be carried out on the basis of the combination of P-values

    Mapping the RP2 locus for X-linked retinitis pigmentosa on proximal Xp: A genetically defined 5-cM critical region and exclusion of candidate genes by physical mapping

    No full text
    Genetic linkage studies have implicated at least two loci for X-linked retinitis pigmentosa [XLRP] on proximal Xp. We now report a defined genetic localization for the RP2 locus to a 5-cM interval in Xp11.3-11.23. Haplotype analysis of polymorphic markers in recombinant individuals from two XLRP families has enabled us to identify DXS8083 and DXS6616 as the new distal and proximal flanking markers for RP2. Using STS-content and YAC end-clone mapping, an similar to 1.2 Mb YAC contig has been established encompassing the proximal RP2 boundary and extending from TIMP1 to DXS1240 in Xp11.23. Several ESTs have been positioned and ordered on this contig, one of which is novel to the region, identified by sequence data-base match to a physically mapped YAC insert terminal STS. Integration of the genetic and physical data has placed four retinally expressed genes proximal to DXS6616, and thereby excluded them from a causitive role in RP2. This work now provides a much needed focus for positional cloning approaches to isolation of the defective gene

    Association Study of 167 Candidate Genes for Schizophrenia Selected by a Multi-Domain Evidence-Based Prioritization Algorithm and Neurodevelopmental Hypothesis

    Get PDF
    Integrating evidence from multiple domains is useful in prioritizing disease candidate genes for subsequent testing. We ranked all known human genes (n = 3819) under linkage peaks in the Irish Study of High-Density Schizophrenia Families using three different evidence domains: 1) a meta-analysis of microarray gene expression results using the Stanley Brain collection, 2) a schizophrenia protein-protein interaction network, and 3) a systematic literature search. Each gene was assigned a domain-specific p-value and ranked after evaluating the evidence within each domain. For comparison to this ranking process, a large-scale candidate gene hypothesis was also tested by including genes with Gene Ontology terms related to neurodevelopment. Subsequently, genotypes of 3725 SNPs in 167 genes from a custom Illumina iSelect array were used to evaluate the top ranked vs. hypothesis selected genes. Seventy-three genes were both highly ranked and involved in neurodevelopment (category 1) while 42 and 52 genes were exclusive to neurodevelopment (category 2) or highly ranked (category 3), respectively. The most significant associations were observed in genes PRKG1, PRKCE, and CNTN4 but no individual SNPs were significant after correction for multiple testing. Comparison of the approaches showed an excess of significant tests using the hypothesis-driven neurodevelopment category. Random selection of similar sized genes from two independent genome-wide association studies (GWAS) of schizophrenia showed the excess was unlikely by chance. In a further meta-analysis of three GWAS datasets, four candidate SNPs reached nominal significance. Although gene ranking using integrated sources of prior information did not enrich for significant results in the current experiment, gene selection using an a priori hypothesis (neurodevelopment) was superior to random selection. As such, further development of gene ranking strategies using more carefully selected sources of information is warranted

    Molecular genetic basis of primary inherited optic neuropathies

    No full text
    Aim To review the molecular genetic basis of primary inherited optic neuropathies. Methods Medline and Embase search. Results Inherited optic neuropathies are a genetically diverse group of disorders that present with reduced visual acuity and the clinical appearance of optic atrophy. The inherited optic neuropathies may be sporadic or familial, in which case the mode of inheritance may be Mendelian (autosomal dominant, autosomal recessive, X-linked recessive) or non-Mendelian (mitochondrial). Two genes for dominantly inherited optic atrophy have been mapped (OPA1 and OPA4), of which the gene has been identified in one (OPA1). A gene for recessive optic atrophy (OPA3) has also been identified. X-linked optic atrophy (OPA2) has been mapped but to date no gene has been identified. Mutations in mitochondrial DNA have been identified in Leber's hereditary optic neuropathy. Conclusions Mutations in genes from both the nuclear and mitochondrial genomes appear to be responsible. Mitochondrial dysfunction, in the broadest sense, is emerging as central to the pathogenesis of this group of conditions
    corecore