20 research outputs found

    PER2 Variation is Associated with Diurnal Preference in a Korean Young Population

    Get PDF
    The PER2 gene has been reported to influence diurnal preference. In this study, we have attempted to characterize the associations between the PER2 gene polymorphisms and diurnal preference in a population of healthy young subjects, controlling for the social and environmental confounding factors. Subjects were 299 students in a college, carefully selected to be mentally and physically healthy. All subjects completed the 13-item composite scale for morningness (CSM). PER2 gene polymorphisms were genotyped by PCR-based methods. Genotype and allele carrier status of a PER2 G3853A polymorphism (rs934945) were associated with CSM scores. Carriers of the 3853G allele showed significantly higher CSM scores (P = 0.004, P = 0.009, and P = 0.001; total, morningness, and activity plan, respectively). There were no significant differences on CSM scores among genotypes and allele status of PER2 rs2304672. This result indicates that rs934945 of PER2 may be associated with diurnal preference in a Korean healthy population

    Interactions of polymorphisms in different clock genes associated with circadian phenotypes in humans

    Get PDF
    Several studies have shown that mutations and polymorphisms in clock genes are associated with abnormal circadian parameters in humans and also with more subtle non-pathological phenotypes like chronotypes. However, there have been conflicting results, and none of these studies analyzed the combined effects of more than one clock gene. Up to date, association studies in humans have focused on the analysis of only one clock gene per study. Since these genes encode proteins that physically interact with each other, combinations of polymorphisms in different clock genes could have a synergistic or an inhibitory effect upon circadian phenotypes. In the present study, we analyzed the combined effects of four polymorphisms in four clock genes (Per2, Per3, Clock and Bmal1) in people with extreme diurnal preferences (morning or evening). We found that a specific combination of polymorphisms in these genes is more frequent in people who have a morning preference for activity and there is a different combination in individuals with an evening preference for activity. Taken together, these results show that it is possible to detect clock gene interactions associated with human circadian phenotypes and bring an innovative idea of building a clock gene variation map that may be applied to human circadian biology
    corecore