110 research outputs found

    Population-Based Precision Cancer Screening: A Symposium on Evidence, Epidemiology, and Next Steps

    Get PDF
    Precision medicine, an emerging approach for disease treatment that takes into account individual variability in genes, environment, and lifestyle, is under consideration for preventive interventions, including cancer screening. On September 29, 2015, the National Cancer Institute sponsored a symposium entitled “Precision Cancer Screening in the General Population: Evidence, Epidemiology, and Next Steps”. The goal was two-fold: to share current information on the evidence, practices, and challenges surrounding precision screening for breast, cervical, colorectal, lung, and prostate cancers, and to allow for in-depth discussion among experts in relevant fields regarding how epidemiology and other population sciences can be used to generate evidence to inform precision screening strategies. Attendees concluded that the strength of evidence for efficacy and effectiveness of precision strategies varies by cancer site, that no one research strategy or methodology would be able or appropriate to address the many knowledge gaps in precision screening, and that issues surrounding implementation must be researched as well. Additional discussion needs to occur to identify the high priority research areas in precision cancer screening for pertinent organs and to gather the necessary evidence to determine whether further implementation of precision cancer screening strategies in the general population would be feasible and beneficial

    Radiographers supporting radiologists in the interpretation of screening mammography: a viable strategy to meet the shortage in the number of radiologists.

    Get PDF
    BackgroundAn alternative approach to the traditional model of radiologists interpreting screening mammography is necessary due to the shortage of radiologists to interpret screening mammograms in many countries.MethodsWe evaluated the performance of 15 Mexican radiographers, also known as radiologic technologists, in the interpretation of screening mammography after a 6 months training period in a screening setting. Fifteen radiographers received 6 months standardized training with radiologists in the interpretation of screening mammography using the Breast Imaging Reporting and Data System (BI-RADS) system. A challenging test set of 110 cases developed by the Breast Cancer Surveillance Consortium was used to evaluate their performance. We estimated sensitivity, specificity, false positive rates, likelihood ratio of a positive test (LR+) and the area under the subject-specific Receiver Operating Characteristic (ROC) curve (AUC) for diagnostic accuracy. A mathematical model simulating the consequences in costs and performance of two hypothetical scenarios compared to the status quo in which a radiologist reads all screening mammograms was also performed.ResultsRadiographer's sensitivity was comparable to the sensitivity scores achieved by U.S. radiologists who took the test but their false-positive rate was higher. Median sensitivity was 73.3 % (Interquartile range, IQR: 46.7-86.7 %) and the median false positive rate was 49.5 % (IQR: 34.7-57.9 %). The median LR+ was 1.4 (IQR: 1.3-1.7 %) and the median AUC was 0.6 (IQR: 0.6-0.7). A scenario in which a radiographer reads all mammograms first, and a radiologist reads only those that were difficult for the radiographer, was more cost-effective than a scenario in which either the radiographer or radiologist reads all mammograms.ConclusionsGiven the comparable sensitivity achieved by Mexican radiographers and U.S. radiologists on a test set, screening mammography interpretation by radiographers appears to be a possible adjunct to radiologists in countries with shortages of radiologists. Further studies are required to assess the effectiveness of different training programs in order to obtain acceptable screening accuracy, as well as the best approaches for the use of non-physician readers to interpret screening mammography

    Fellowship training:a qualitative study of scope and purpose across one department of medicine

    Get PDF
    BACKGROUND: Fellowship training follows certification in a primary specialty or subspecialty and focusses on distinct and advanced clinical and/or academic skills. This phase of medical education is growing in prevalence, but has been an "invisible phase of postgraduate training" lacking standards for education and accreditation, as well as funding. We aimed to explore fellowship programs and examine the reasons to host and participate in fellowship training, seeking to inform the future development of fellowship education. METHODS: During the 2013-14 academic year, we conducted interviews and focus groups to examine the current status of fellowship training from the perspectives of division heads, fellowship directors and current fellows at the Department of Medicine, University of Ottawa, Canada. Descriptive statistics were used to depict the prevailing status of fellowship training. A process of data reduction, data analysis and conclusions/verifications was performed to analyse the quantitative data. RESULTS: We interviewed 16 division heads (94%), 15 fellowship directors (63%) and 8 fellows (21%). We identified three distinct types of fellowships. Individualized fellowships focus on the career goals of the trainee and/or the recruitment goals of the division. Clinical fellowships focus on the attainment of clinical expertise over and above the competencies of residency. Research fellowships focus on research productivity. Participants identified a variety of reasons to offer fellowships: improve academic productivity; improve clinical productivity; share/develop enhanced clinical expertise; recruit future faculty members/attain an academic position; enhance the reputation of the division/department/trainee; and enhance the scholarly environment. CONCLUSIONS: Fellowships serve a variety of purposes which benefit both individual trainees as well as the academic enterprise. Fellowships can be categorized within a distinct taxonomy: individualized; clinical; and research. Each type of fellowship may serve a variety of purposes, and each may need distinct support and resources. Further research is needed to catalogue the operational requirements for hosting and undertaking fellowship training, and establish recommendations for educational and administrative policy and processes in this new phase of postgraduate education

    External validation of the Scandinavian guidelines for management of minimal, mild and moderate head injuries in children

    Get PDF
    © 2018 The Author(s). Background: Clinical decision rules (CDRs) aid in the management of children with traumatic brain injury (TBI). Recently, the Scandinavian Neurotrauma Committee (SNC) has published practical, evidence-based guidelines for children with Glasgow Coma Scale (GCS) scores of 9-15. This study aims to validate these guidelines and to compare them with other CDRs. Methods: A large prospective cohort of children (< 18 years) with TBI of all severities, from ten Australian and New Zealand hospitals, was used to assess the SNC guidelines. Firstly, a validation study was performed according to the inclusion and exclusion criteria of the SNC guideline. Secondly, we compared the accuracy of SNC, CATCH, CHALICE and PECARN CDRs in patients with GCS 13-15 only. Diagnostic accuracy was calculated for outcome measures of need for neurosurgery, clinically important TBI (ciTBI) and brain injury on CT. Results: The SNC guideline could be applied to 19,007/20,137 of patients (94.4%) in the validation process. The frequency of ciTBI decreased significantly with stratification by decreasing risk according to the SNC guideline. Sensitivities for the detection of neurosurgery, ciTBI and brain injury on CT were 100.0% (95% CI 89.1-100.0; 32/32), 97.8% (94.5-99.4; 179/183) and 95% (95% CI 91.6-97.2; 262/276), respectively, with a CT/admission rate of 42% (mandatory CT rate of 5%, 18% CT or admission and 19% only admission). Four patients with ciTBI were missed; none needed specific intervention. In the homogenous comparison cohort of 18,913 children, the SNC guideline performed similar to the PECARN CDR, when compared with the other CDRs. Conclusion: The SNC guideline showed a high accuracy in a large external validation cohort and compares well with published CDRs for the management of paediatric TBI

    A prospective observational study to assess the diagnostic accuracy of clinical decision rules for children presenting to emergency departments after head injuries (protocol): The Australasian Paediatric Head Injury Rules Study (APHIRST)

    Get PDF
    Background: Head injuries in children are responsible for a large number of emergency department visits. Failure to identify a clinically significant intracranial injury in a timely fashion may result in long term neurodisability and death. Whilst cranial computed tomography (CT) provides rapid and definitive identification of intracranial injuries, it is resource intensive and associated with radiation induced cancer. Evidence based head injury clinical decision rules have been derived to aid physicians in identifying patients at risk of having a clinically significant intracranial injury. Three rules have been identified as being of high quality and accuracy: the Canadian Assessment of Tomography for Childhood Head Injury (CATCH) from Canada, the Children's Head Injury Algorithm for the Prediction of Important Clinical Events (CHALICE) from the UK, and the prediction rule for the identification of children at very low risk of clinically important traumatic brain injury developed by the Pediatric Emergency Care Applied Research Network (PECARN) from the USA. This study aims to prospectively validate and compare the performance accuracy of these three clinical decision rules when applied outside the derivation setting.Methods/design: This study is a prospective observational study of children aged 0 to less than 18 years presenting to 10 emergency departments within the Paediatric Research in Emergency Departments International Collaborative (PREDICT) research network in Australia and New Zealand after head injuries of any severity. Predictor variables identified in CATCH, CHALICE and PECARN clinical decision rules will be collected. Patients will be managed as per the treating clinicians at the participating hospitals. All patients not undergoing cranial CT will receive a follow up call 14 to 90 days after the injury. Outcome data collected will include results of cranial CTs (if performed) and details of admission, intubation, neurosurgery and death. The performance accuracy of each of the rules will be assessed using rule specific outcomes and inclusion and exclusion criteria.Discussion: This study will allow the simultaneous comparative application and validation of three major paediatric head injury clinical decision rules outside their derivation setting.Trial registration: The study is registered with the Australian New Zealand Clinical Trials Registry (ANZCTR)- ACTRN12614000463673 (registered 2 May 2014). © 2014 Babl et al.; licensee BioMed Central Ltd

    Acute appendicitis: transcript profiling of blood identifies promising biomarkers and potential underlying processes

    Get PDF
    Background The diagnosis of acute appendicitis can be surprisingly difficult without computed tomography, which carries significant radiation exposure. Circulating blood cells may carry informative changes in their RNA expression profile that would signal internal infection or inflammation of the appendix. Methods Genome-wide expression profiling was applied to whole blood RNA of acute appendicitis patients versus patients with other abdominal disorders, in order to identify biomarkers of appendicitis. From a large cohort of emergency patients, a discovery set of patients with surgically confirmed appendicitis, or abdominal pain from other causes, was identified. RNA from whole blood was profiled by microarrays, and RNA levels were filtered by a combined fold-change (\u3e2) and p value (\u3c0.05). A separate set of patients, including patients with respiratory infections, was used to validate a partial least squares discriminant (PLSD) prediction model. Results Transcript profiling identified 37 differentially expressed genes (DEG) in appendicitis versus abdominal pain patients. The DEG list contained 3 major ontologies: infection-related, inflammation-related, and ribosomal processing. Appendicitis patients had lower level of neutrophil defensin mRNA (DEFA1,3), but higher levels of alkaline phosphatase (ALPL) and interleukin-8 receptor-ß (CXCR2/IL8RB), which was confirmed in a larger cohort of 60 patients using droplet digital PCR (ddPCR). Conclusions Patients with acute appendicitis have detectable changes in the mRNA expression levels of factors related to neutrophil innate defense systems. The low defensin mRNA levels suggest that appendicitis patient’s immune cells are not directly activated by pathogens, but are primed by diffusible factors in the microenvironment of the infection. The detected biomarkers are consistent with prior evidence that biofilm-forming bacteria in the appendix may be an important factor in appendicitis
    corecore