34 research outputs found

    Evaluation of guided imagery as treatment for recurrent abdominal pain in children: a randomized controlled trial

    Get PDF
    BACKGROUND: Because of the paucity of effective evidence-based therapies for children with recurrent abdominal pain, we evaluated the therapeutic effect of guided imagery, a well-studied self-regulation technique. METHODS: 22 children, aged 5 – 18 years, were randomized to learn either breathing exercises alone or guided imagery with progressive muscle relaxation. Both groups had 4-weekly sessions with a therapist. Children reported the numbers of days with pain, the pain intensity, and missed activities due to abdominal pain using a daily pain diary collected at baseline and during the intervention. Monthly phone calls to the children reported the number of days with pain and the number of days of missed activities experienced during the month of and month following the intervention. Children with ≤ 4 days of pain/month and no missed activities due to pain were defined as being healed. Depression, anxiety, and somatization were measured in both children and parents at baseline. RESULTS: At baseline the children who received guided imagery had more days of pain during the preceding month (23 vs. 14 days, P = 0.04). There were no differences in the intensity of painful episodes or any baseline psychological factors between the two groups. Children who learned guided imagery with progressive muscle relaxation had significantly greater decrease in the number of days with pain than those learning breathing exercises alone after one (67% vs. 21%, P = 0.05), and two (82% vs. 45%, P < 0.01) months and significantly greater decrease in days with missed activities at one (85% vs. 15%, P = 0.02) and two (95% vs. 77%. P = 0.05) months. During the two months of follow-up, more children who had learned guided imagery met the threshold of ≤ 4 day of pain each month and no missed activities (RR = 7.3, 95%CI [1.1,48.6]) than children who learned only the breathing exercises. CONCLUSION: The therapeutic efficacy of guided imagery with progressive muscle relaxation found in this study is consistent with our present understanding of the pathophysiology of recurrent abdominal pain in children. Although unfamiliar to many pediatricians, guided imagery is a simple, noninvasive therapy with potential benefit for treating children with RAP

    Complex I-Associated Hydrogen Peroxide Production Is Decreased and Electron Transport Chain Enzyme Activities Are Altered in n-3 Enriched fat-1 Mice

    Get PDF
    The polyunsaturated nature of n-3 fatty acids makes them prone to oxidative damage. However, it is not clear if n-3 fatty acids are simply a passive site for oxidative attack or if they also modulate mitochondrial reactive oxygen species (ROS) production. The present study used fat-1 transgenic mice, that are capable of synthesizing n-3 fatty acids, to investigate the influence of increases in n-3 fatty acids and resultant decreases in the n-6∶n-3 ratio on liver mitochondrial H2O2 production and electron transport chain (ETC) activity. There was an increase in n-3 fatty acids and a decrease in the n-6∶n-3 ratio in liver mitochondria from the fat-1 compared to control mice. This change was largely due to alterations in the fatty acid composition of phosphatidylcholine and phosphatidylethanolamine, with only a small percentage of fatty acids in cardiolipin being altered in the fat-1 animals. The lipid changes in the fat-1 mice were associated with a decrease (p<0.05) in the activity of ETC complex I and increases (p<0.05) in the activities of complexes III and IV. Mitochondrial H2O2 production with either succinate or succinate/glutamate/malate substrates was also decreased (p<0.05) in the fat-1 mice. This change in H2O2 production was due to a decrease in ROS production from ETC complex I in the fat-1 animals. These results indicate that the fatty acid changes in fat-1 liver mitochondria may at least partially oppose oxidative stress by limiting ROS production from ETC complex I

    Abstract 2-F-PM4-1

    Get PDF
    In a typical sawmill, logs enter the mill and go through a de-barking process. Following this operation they go to the headrig where a sawyer moves the log repeatedly past a saw to remove boards one at a time. As more of the log interior is exposed with each board removed, the sawyer may re-orient the log periodically to cut from the best side. Sawn boards go through subsequent operations of edging and trimming, where defects near the edges and/or ends of the boards are removed to increase each board’s grade, and therefore its value. The cant (the cubical center section of the log) remaining from initial breakdown enters a resawing operation where additional boards are cut. These are also edged and trimmed
    corecore