131 research outputs found

    BPI-fold (BPIF) containing/plunc protein expression in human fetal major and minor salivary glands.

    Get PDF
    The aim of this study was to determine expression, not previously described, of PLUNC (palate, lung, and nasal epithelium clone) (BPI-fold containing) proteins in major and minor salivary glands from very early fetal tissue to the end of the second trimester and thus gain further insight into the function of these proteins. Early fetal heads, and major and minor salivary glands were collected retrospectively and glands were classified according to morphodifferentiation stage. Expression of BPI-fold containing proteins was localized through immunohistochemistry. BPIFA2, the major BPI-fold containing protein in adult salivary glands, was detected only in the laryngeal pharynx; the lack of staining in salivary glands suggested salivary expression is either very late in development or is only in adult tissues. Early expression of BPIFA1 was seen in the trachea and nasal cavity with salivary gland expression only seen in late morphodifferentiation stages. BPIFB1 was seen in early neural tissue and at later stages in submandibular and sublingual glands. BPIFA1 is significantly expressed in early fetal oral tissue but BPIFB1 has extremely limited expression and the major salivary BPIF protein (BPIFA2) is not produced in fetal development. Further studies, with more sensitive techniques, will confirm the expression pattern and enable a better understanding of embryonic BPIF protein function

    Effects of thermal water inhalation in chronic upper respiratory tract infections in elderly and young patients

    Get PDF
    Background: Chronic upper respiratory tract infections (cURTI) are very frequent illnesses which occur at any age of life. In elderly, cURTI are complicated by immunosenescence, with involvement of lung immune responsiveness. Results: In the present study, 51 elderly (age range: 66-86) and 51 young (age range 24-58) cURTI patients underwent a single cycle (two weeks) of inhalatory therapy with salt-bromide-iodine thermal water in the thermal station "Margherita di Savoia" (Margherita di Savoia, BAT, Italy). Peripheral blood serum cytokines and clinical assessment were performed before therapy (T0) and after six months (T1) and 12 months (T2) from inhalatory treatment. In both elderly and young patients, at baseline an increased release of T helper (h)1-related cytokines [interleukin (IL)-2 and interferon-γ] and of Th2-related cytokine (IL-4) was documented. Inhalatory treatment reduced the excessive secretion of all the above-cited cytokines. IL-10 values were above normality at all times considered in both groups of patients. In addition, an increase in IL-17 and IL-21 serum levels following therapy was observed in both groups of patients. Pro-inflammatory cytokine (IL-1β, IL-6, IL-8 and tumor necrosis factor-α) baseline values were lower than normal values at T0 in both elderly and young cURTI patients. Their levels increased following inhalatory treatment. Clinically, at T2 a dramatic reduction of frequency of upper respiratory tract infections was recorded in both groups of patients. Conclusion: Thermal water inhalation is able to modulate systemic immune response in elderly and young cURTI patients, thus reducing excessive production of Th1 and Th2-related cytokines, on the one hand. On the other hand, increased levels of IL-21 (an inducer of Th17 cells) and of IL-17 may be interpreted as a protective mechanism, which likely leads to neutrophil recruitment in cURTI patients. Also restoration of pro-inflammatory cytokine release following inhalatory therapy may result in microbe eradication. Quite importantly, the maintenance of high levels of IL-10 during the follow-up would suggest a consistent regulatory role of this cytokine in attenuating the pro-inflammatory arm of the immune response

    Pathophysiological classification of chronic rhinosinusitis

    Get PDF
    BACKGROUND: Recent consensus statements demonstrate the breadth of the chronic rhinosinusitis (CRS) differential diagnosis. However, the classification and mechanisms of different CRS phenotypes remains problematic. METHOD: Statistical patterns of subjective and objective findings were assessed by retrospective chart review. RESULTS: CRS patients were readily divided into those with (50/99) and without (49/99) polyposis. Aspirin sensitivity was limited to 17/50 polyp subjects. They had peripheral blood eosinophilia and small airways obstruction. Allergy skin tests were positive in 71% of the remaining polyp subjects. IgE was<10 IU/ml in 8/38 polyp and 20/45 nonpolyp subjects (p = 0.015, Fisher's Exact test). CT scans of the CRS without polyp group showed sinus mucosal thickening (probable glandular hypertrophy) in 28/49, and nasal osteomeatal disease in 21/49. Immunoglobulin isotype deficiencies were more prevalent in nonpolyp than polyp subjects (p < 0.05). CONCLUSION: CRS subjects were retrospectively classified in to 4 categories using the algorithm of (1) polyp vs. nonpolyp disease, (2) aspirin sensitivity in polyposis, and (3) sinus mucosal thickening vs. nasal osteomeatal disease (CT scan extent of disease) for nonpolypoid subjects. We propose that the pathogenic mechanisms responsible for polyposis, aspirin sensitivity, humoral immunodeficiency, glandular hypertrophy, eosinophilia and atopy are primary mechanisms underlying these CRS phenotypes. The influence of microbial disease and other factors remain to be examined in this framework. We predict that future clinical studies and treatment decisions will be more logical when these interactive disease mechanisms are used to stratify CRS patients

    Tobacco Smoke Mediated Induction of Sinonasal Microbial Biofilms

    Get PDF
    Cigarette smokers and those exposed to second hand smoke are more susceptible to life threatening infection than non-smokers. While much is known about the devastating effect tobacco exposure has on the human body, less is known about the effect of tobacco smoke on the commensal and commonly found pathogenic bacteria of the human respiratory tract, or human respiratory tract microbiome. Chronic rhinosinusitis (CRS) is a common medical complaint, affecting 16% of the US population with an estimated aggregated cost of $6 billion annually. Epidemiologic studies demonstrate a correlation between tobacco smoke exposure and rhinosinusitis. Although a common cause of CRS has not been defined, bacterial presence within the nasal and paranasal sinuses is assumed to be contributory. Here we demonstrate that repetitive tobacco smoke exposure induces biofilm formation in a diverse set of bacteria isolated from the sinonasal cavities of patients with CRS. Additionally, bacteria isolated from patients with tobacco smoke exposure demonstrate robust in vitro biofilm formation when challenged with tobacco smoke compared to those isolated from smoke naïve patients. Lastly, bacteria from smoke exposed patients can revert to a non-biofilm phenotype when grown in the absence of tobacco smoke. These observations support the hypothesis that tobacco exposure induces sinonasal biofilm formation, thereby contributing to the conversion of a transient and medically treatable infection to a persistent and therapeutically recalcitrant condition
    corecore