1,157 research outputs found
Shearlets and Optimally Sparse Approximations
Multivariate functions are typically governed by anisotropic features such as
edges in images or shock fronts in solutions of transport-dominated equations.
One major goal both for the purpose of compression as well as for an efficient
analysis is the provision of optimally sparse approximations of such functions.
Recently, cartoon-like images were introduced in 2D and 3D as a suitable model
class, and approximation properties were measured by considering the decay rate
of the  error of the best -term approximation. Shearlet systems are to
date the only representation system, which provide optimally sparse
approximations of this model class in 2D as well as 3D. Even more, in contrast
to all other directional representation systems, a theory for compactly
supported shearlet frames was derived which moreover also satisfy this
optimality benchmark. This chapter shall serve as an introduction to and a
survey about sparse approximations of cartoon-like images by band-limited and
also compactly supported shearlet frames as well as a reference for the
state-of-the-art of this research field.Comment: in "Shearlets: Multiscale Analysis for Multivariate Data",
  Birkh\"auser-Springe
Yet another breakdown point notion: EFSBP - illustrated at scale-shape models
The breakdown point in its different variants is one of the central notions
to quantify the global robustness of a procedure. We propose a simple
supplementary variant which is useful in situations where we have no obvious or
only partial equivariance: Extending the Donoho and Huber(1983) Finite Sample
Breakdown Point, we propose the Expected Finite Sample Breakdown Point to
produce less configuration-dependent values while still preserving the finite
sample aspect of the former definition. We apply this notion for joint
estimation of scale and shape (with only scale-equivariance available),
exemplified for generalized Pareto, generalized extreme value, Weibull, and
Gamma distributions. In these settings, we are interested in highly-robust,
easy-to-compute initial estimators; to this end we study Pickands-type and
Location-Dispersion-type estimators and compute their respective breakdown
points.Comment: 21 pages, 4 figure
On the Doubly Sparse Compressed Sensing Problem
A new variant of the Compressed Sensing problem is investigated when the
number of measurements corrupted by errors is upper bounded by some value l but
there are no more restrictions on errors. We prove that in this case it is
enough to make 2(t+l) measurements, where t is the sparsity of original data.
Moreover for this case a rather simple recovery algorithm is proposed. An
analog of the Singleton bound from coding theory is derived what proves
optimality of the corresponding measurement matrices.Comment: 6 pages, IMACC2015 (accepted
Necessary and sufficient conditions of solution uniqueness in minimization
This paper shows that the solutions to various convex  minimization
problems are \emph{unique} if and only if a common set of conditions are
satisfied. This result applies broadly to the basis pursuit model, basis
pursuit denoising model, Lasso model, as well as other  models that
either minimize  or impose the constraint , where
 is a strictly convex function. For these models, this paper proves that,
given a solution  and defining I=\supp(x^*) and s=\sign(x^*_I), 
is the unique solution if and only if  has full column rank and there
exists  such that  and  for . This
condition is previously known to be sufficient for the basis pursuit model to
have a unique solution supported on . Indeed, it is also necessary, and
applies to a variety of other  models. The paper also discusses ways to
recognize unique solutions and verify the uniqueness conditions numerically.Comment: 6 pages; revised version; submitte
lp-Recovery of the Most Significant Subspace among Multiple Subspaces with Outliers
We assume data sampled from a mixture of d-dimensional linear subspaces with
spherically symmetric distributions within each subspace and an additional
outlier component with spherically symmetric distribution within the ambient
space (for simplicity we may assume that all distributions are uniform on their
corresponding unit spheres). We also assume mixture weights for the different
components. We say that one of the underlying subspaces of the model is most
significant if its mixture weight is higher than the sum of the mixture weights
of all other subspaces. We study the recovery of the most significant subspace
by minimizing the lp-averaged distances of data points from d-dimensional
subspaces, where p>0. Unlike other lp minimization problems, this minimization
is non-convex for all p>0 and thus requires different methods for its analysis.
We show that if 0<p<=1, then for any fraction of outliers the most significant
subspace can be recovered by lp minimization with overwhelming probability
(which depends on the generating distribution and its parameters). We show that
when adding small noise around the underlying subspaces the most significant
subspace can be nearly recovered by lp minimization for any 0<p<=1 with an
error proportional to the noise level. On the other hand, if p>1 and there is
more than one underlying subspace, then with overwhelming probability the most
significant subspace cannot be recovered or nearly recovered. This last result
does not require spherically symmetric outliers.Comment: This is a revised version of the part of 1002.1994 that deals with
  single subspace recovery. V3: Improved estimates (in particular for Lemma 3.1
  and for estimates relying on it), asymptotic dependence of probabilities and
  constants on D and d and further clarifications; for simplicity it assumes
  uniform distributions on spheres. V4: minor revision for the published
  versio
Super-resolution far-field ghost imaging via compressive sampling
Much more image details can be resolved by improving the system's imaging
resolution and enhancing the resolution beyond the system's Rayleigh
diffraction limit is generally called super-resolution. By combining the sparse
prior property of images with the ghost imaging method, we demonstrated
experimentally that super-resolution imaging can be nonlocally achieved in the
far field even without looking at the object. Physical explanation of
super-resolution ghost imaging via compressive sampling and its potential
applications are also discussed.Comment: 4pages,4figure
Non-Redundant Spectral Dimensionality Reduction
Spectral dimensionality reduction algorithms are widely used in numerous
domains, including for recognition, segmentation, tracking and visualization.
However, despite their popularity, these algorithms suffer from a major
limitation known as the "repeated Eigen-directions" phenomenon. That is, many
of the embedding coordinates they produce typically capture the same direction
along the data manifold. This leads to redundant and inefficient
representations that do not reveal the true intrinsic dimensionality of the
data. In this paper, we propose a general method for avoiding redundancy in
spectral algorithms. Our approach relies on replacing the orthogonality
constraints underlying those methods by unpredictability constraints.
Specifically, we require that each embedding coordinate be unpredictable (in
the statistical sense) from all previous ones. We prove that these constraints
necessarily prevent redundancy, and provide a simple technique to incorporate
them into existing methods. As we illustrate on challenging high-dimensional
scenarios, our approach produces significantly more informative and compact
representations, which improve visualization and classification tasks
Optimization viewpoint on Kalman smoothing, with applications to robust and sparse estimation
In this paper, we present the optimization formulation of the Kalman
filtering and smoothing problems, and use this perspective to develop a variety
of extensions and applications. We first formulate classic Kalman smoothing as
a least squares problem, highlight special structure, and show that the classic
filtering and smoothing algorithms are equivalent to a particular algorithm for
solving this problem. Once this equivalence is established, we present
extensions of Kalman smoothing to systems with nonlinear process and
measurement models, systems with linear and nonlinear inequality constraints,
systems with outliers in the measurements or sudden changes in the state, and
systems where the sparsity of the state sequence must be accounted for. All
extensions preserve the computational efficiency of the classic algorithms, and
most of the extensions are illustrated with numerical examples, which are part
of an open source Kalman smoothing Matlab/Octave package.Comment: 46 pages, 11 figure
Towards a comprehensive evaluation of ultrasound speckle reduction
Over the last three decades, several despeckling filters have been developed to reduce the speckle noise inherently present in ultrasound images without losing the diagnostic information. In this paper, a new intensity and feature preservation evaluation metric for full speckle reduction evaluation is proposed based contrast and feature similarities. A comparison of the despeckling methods is done, using quality metrics and visual interpretation of images profiles to evaluate their performance and show the benefits each one can contribute to noise reduction and feature preservation. To test the methods, noise-free images and simulated B-mode ultrasound images are used. This way, the despeckling techniques can be compared using numeric metrics, taking the noise-free image as a reference. In this study, a total of seventeen different speckle reduction algorithms have been documented based on adaptive filtering, diffusion filtering and wavelet filtering, with sixteen qualitative metrics estimation.info:eu-repo/semantics/publishedVersio
Manifold Elastic Net: A Unified Framework for Sparse Dimension Reduction
It is difficult to find the optimal sparse solution of a manifold learning
based dimensionality reduction algorithm. The lasso or the elastic net
penalized manifold learning based dimensionality reduction is not directly a
lasso penalized least square problem and thus the least angle regression (LARS)
(Efron et al. \cite{LARS}), one of the most popular algorithms in sparse
learning, cannot be applied. Therefore, most current approaches take indirect
ways or have strict settings, which can be inconvenient for applications. In
this paper, we proposed the manifold elastic net or MEN for short. MEN
incorporates the merits of both the manifold learning based dimensionality
reduction and the sparse learning based dimensionality reduction. By using a
series of equivalent transformations, we show MEN is equivalent to the lasso
penalized least square problem and thus LARS is adopted to obtain the optimal
sparse solution of MEN. In particular, MEN has the following advantages for
subsequent classification: 1) the local geometry of samples is well preserved
for low dimensional data representation, 2) both the margin maximization and
the classification error minimization are considered for sparse projection
calculation, 3) the projection matrix of MEN improves the parsimony in
computation, 4) the elastic net penalty reduces the over-fitting problem, and
5) the projection matrix of MEN can be interpreted psychologically and
physiologically. Experimental evidence on face recognition over various popular
datasets suggests that MEN is superior to top level dimensionality reduction
algorithms.Comment: 33 pages, 12 figure
- …
