138 research outputs found

    Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery

    Get PDF
    We demonstrate an endoscope-compatible single-fiber-based device that performs simultaneous confocal microscopy and high-precision laser microsurgery. The method is based on mapping of two-dimensional sample coordinates onto the optical spectrum and allows us to perform two-dimensional imaging and microsurgery without any mechanical movement of the probe or the sample. The technology holds promise for creating highly miniaturized endoscopes for applications such as brain tumor, pediatric, and endovascular surgeries where high-precision, small, and flexible probes are required. © 2009 Optical Society of America.published_or_final_versio

    The Remote Field Effect and Its Interpretation

    Get PDF
    The Remote Field Effect (RFE) and the testing method based on it have attracted considerable attention from the research community. The need to explain the apparent discrepancies between the effect and the known electromagnetic field behavior is the reason for this attention

    Surface Barkhausen Noise Investigations of Stress and Leakage Flux Signals in Line Pipe

    Get PDF
    Pipelines are subjected to a number of different sources of stress. The principal in-service stress component is due to line pressure, with operating stresses commonly about 60% of the yield strength. Pipelines may also be subjected to considerable bending stresses, particularly when constructed on unstable terrain such as permafrost. Residual stresses may also be present, generally resulting from processing or welding, but more seriously as a consequence of mechanical damage. Anomalously high stress levels, whether residual or applied, may lead to pipeline failure; as a result serious efforts are being made to develop on-line stress detection methods. It is well established that stress is a major factor affecting magnetic properties of ferromagnetic materials, however the effects are complex and have only recently begun to be understood [1,2]. Because of the strong influence of stress on magnetic properties, magnetic NDE techniques are being considered as potential methods for the detection of stress

    Effects of Stress on Magnetic Flux Leakage and Magnetic Barkhausen Noise Signals

    Get PDF
    Pipelines are pressure vessels. Their enviable safety record compares well with other transportation modes. Typical pipeline fatality rates are about 1% those of rail or air which are, in turn, about 1% of highway fatalities. Pipeline safety is first assured by rigorous inspection during pipe manufacture and line construction. All welds are inspected using radiography to detect voids and ultrasonics to sense cracks. Oil and gas transmission lines are normally buried, so in service inspection must be performed from the inside by pumping an inspection “pig” through the line. Magnetic flux leakage (MFL) pigs are the most cost effective tools for corrosion monitoring. They are propelled by differential product pressure from one compressor or pumping station to the next, which may be more than 100km away. They are self supporting, demand maximum data storage density and highest energy storage battery power supplies as well as advanced signal processing to obtain signal discrimination and data compression.</p

    Changes in Magnetization and in Dislocation Arrangements in Cyclically Deformed Iron and Nickel

    Get PDF
    There are a lot of experimental results concerning the effect of stress, elastic and plastic deformation and dislocation structure on the magnetic properties of ferromagnetic material. Atherton et al. measured stress induced changes in the magnetization of steel pipesl. Schroeder et al. studied domain arrangement in plastically deformed iron single crystals2. Hayashi et al. found that the application of an oscillating magnetic field during tensile testing reduced the flow stress of nickel3. Jiles and Atherton4,5D reported changes in magnetization during one stress cycle as a function of an external magnetic field. They have also reported a theory that describes ferromagnetic hysteresis and the effect of stress on magnetization. This theory is based on the Langevins theory of paramagnetism. Jiles and Atherton4 have experimentally shown that the modified Langevins equation gives the change in magnetization as a function of the applied magnetic field

    Molecular networks of human muscle adaptation to exercise and age

    Get PDF
    Physical activity and molecular ageing presumably interact to precipitate musculoskeletal decline in humans with age. Herein, we have delineated molecular networks for these two major components of sarcopenic risk using multiple independent clinical cohorts. We generated genome-wide transcript profiles from individuals (n = 44) who then undertook 20 weeks of supervised resistance-exercise training (RET). Expectedly, our subjects exhibited a marked range of hypertrophic responses (3% to +28%), and when applying Ingenuity Pathway Analysis (IPA) up-stream analysis to ~580 genes that co-varied with gain in lean mass, we identified rapamycin (mTOR) signaling associating with growth (P = 1.4×10−30). Paradoxically, those displaying most hypertrophy exhibited an inhibited mTOR activation signature, including the striking down-regulation of 70 rRNAs. Differential analysis found networks mimicking developmental processes (activated all-trans-retinoic acid (ATRA, Z-score = 4.5; P = 6×10−13) and inhibited aryl-hydrocarbon receptor signaling (AhR, Z-score = −2.3; P = 3×10−7)) with RET. Intriguingly, as ATRA and AhR gene-sets were also a feature of endurance exercise training (EET), they appear to represent “generic” physical activity responsive gene-networks. For age, we found that differential gene-expression methods do not produce consistent molecular differences between young versus old individuals. Instead, utilizing two independent cohorts (n = 45 and n = 52), with a continuum of subject ages (18–78 y), the first reproducible set of age-related transcripts in human muscle was identified. This analysis identified ~500 genes highly enriched in post-transcriptional processes (P = 1×10−6) and with negligible links to the aforementioned generic exercise regulated gene-sets and some overlap with ribosomal genes. The RNA signatures from multiple compounds all targeting serotonin, DNA topoisomerase antagonism, and RXR activation were significantly related to the muscle age-related genes. Finally, a number of specific chromosomal loci, including 1q12 and 13q21, contributed by more than chance to the age-related gene list (P = 0.01–0.005), implying possible epigenetic events. We conclude that human muscle age-related molecular processes appear distinct from the processes regulated by those of physical activity

    Age and Diet Affect Gene Expression Profiles in Canine Liver Tissue

    Get PDF
    BACKGROUND: The liver plays a central role in nutrient and xenobiotic metabolism, but its functionality declines with age. Senior dogs suffer from many of the chronic hepatic diseases as elderly humans, with age-related alterations in liver function influenced by diet. However, a large-scale molecular analysis of the liver tissue as affected by age and diet has not been reported in dogs. METHODOLOGY/PRINCIPAL FINDINGS: Liver tissue samples were collected from six senior (12-year old) and six young adult (1-year old) female beagles fed an animal protein-based diet (APB) or a plant protein-based diet (PPB) for 12 months. Total RNA in the liver tissue was extracted and hybridized to Affymetrix GeneChip® Canine Genome Arrays. Using a 2.0-fold cutoff and false discovery rate <0.10, our results indicated that expression of 234 genes was altered by age, while 137 genes were differentially expressed by diet. Based on functional classification, genes affected by age and/or diet were involved in cellular development, nutrient metabolism, and signal transduction. In general, gene expression suggested that senior dogs had an increased risk of the progression of liver disease and dysfunction, as observed in aged humans and rodents. In particular for aged liver, genes related to inflammation, oxidative stress, and glycolysis were up-regulated, whereas genes related to regeneration, xenobiotic metabolism, and cholesterol trafficking were down-regulated. Diet-associated changes in gene expression were more common in young adult dogs (33 genes) as compared to senior dogs (3 genes). CONCLUSION: Our results provide molecular insight pertaining to the aged canine liver and its predisposition to disease and abnormalities. Therefore, our data may aid in future research pertaining to age-associated alterations in hepatic function or identification of potential targets for nutritional management as a means to decrease incidence of age-dependent liver dysfunction
    corecore