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LETTER TO THE EDITOR
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Dear Editor:

Morphological adaptations of skeletal muscle to resist-
ance exercise training (RET) have been the subject of 
many studies: essentially, muscle hypertrophy is achieved 
by a structural remodelling of the contractile machinery, 
which can be assessed macroscopically by investigating 
changes in muscle architecture (i.e. fascicle length, Lf; 
pennation angle, PA; muscle thickness, MT) (Gans 1982; 
Narici 1999; Lieber and Fridén 2000, 2001; Reeves et al. 
2004, 2005). A thorough understanding of muscle archi-
tecture is indeed fundamental when interpreting train-
ing-induced changes in muscle function given its key role 
as determinant of muscle mechanical properties (Narici 
et al. 2015; Lieber and Fridén 2000).

In a recent study by Fukutani and Kurihara (2015) pub-
lished in SpringerPlus (2015, 4:341), the authors inves-
tigated differences in Lf between resistance trained and 
untrained individuals using a cross-sectional design: 
the main conclusion being made was that Lf was not 
associated with muscle hypertrophy on the basis that 
no significant differences in Lf were found between the 
groups. The authors claimed that fascicle length does not 
increase with resistance training.

Some fundamental considerations arise from these 
findings. Skeletal muscle hypertrophy in response to RET 
is mainly accomplished with the addition of new contrac-
tile material as a result of enhanced muscle myofibrillar 
protein synthesis after exercise (Glass 2003; Atherton 
and Smith 2012). Moreover, it is well established that 
the longitudinal post-natal growth of mammal muscle is 
associated with the increased in length and size of mus-
cle fibres (Goldspink 1968; Williams and Goldspink 1971; 

Russell et  al. 2000). Seminal pre-clinical studies previ-
ously showed that skeletal muscle responds to passive 
and intermittent stretch by adding new sarcomeres in-
series (Holly et al. 1980; Goldspink 1985; Williams et al. 
1988; Williams 1990), a phenomenon that occurs also in 
response to exercise regimes/overload, especially when 
including lengthening muscle actions (Goldspink 1999; 
Proske and Morgan 2001). Greater addition of serial sar-
comeres was found in rats after downhill compared to 
uphill running (Lynn and Morgan 1994; Butterfield et al. 
2005), reinforcing the concept of muscle longitudinal 
growth being intimately related to lengthening contrac-
tions. Indeed, the addition of sarcomeres in series (and 
thus increased Lf ) appears to be one of the main “protec-
tive” mechanisms after eccentric exercise induced muscle 
damage (Morgan and Talbot 2002).

Further support to these observations on animal mus-
cle can be found in numerous studies investigating 
architectural responses to RET, directly in humans. Inter-
estingly, Fukutani and Kurihara stated it as controversial 
as to whether Lf increases after RET: however the num-
ber of reports showing no increases in Lf in response to 
exercise is limited (Blazevich et  al. 2007b; Erskine et  al. 
2010; Ema et  al. 2013) compared to those that demon-
strated an increase in Lf after either conventional resist-
ance, isokinetic, isoinertial or even marathon training 
(Morgan and Proske 2004; Seynnes et al. 2007; Blazevich 
et al. 2007a; Potier et al. 2009; Reeves et al. 2009; Baroni 
et al. 2013; Franchi et al. 2014, 2015; Sharifnezhad et al. 
2014; McMahon et  al. 2014; Murach et  al. 2015). But, 
most importantly, it was recently reported by our group 
that, in both young and older populations, architectural 
changes, such as increases in Lf, are somewhat con-
traction-specific (Reeves et al. 2009; Franchi et al. 2014, 
2015). That is, concentric loading promotes increases in 
PA, reflecting preferential addition of sarcomeres in par-
allel, whereas eccentric training favours the increase of 
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Lf through the addition of sarcomeres in series. It is our 
opinion that these investigations should have been cited 
in Fukutani and Kurihara’s manuscript. Furthermore, 
considering the substantial number of longitudinal stud-
ies that have showed significant changes in Lf and muscle 
architecture after RET, the adoption of such a cross-sec-
tional study design calls into question the validity of 
these conclusions. Moreover, the investigation was per-
formed on recreationally active volunteers (the untrained 
group, with “no experience in regular RET”) compared 
to a group of “resistance exercise trained” participants, 
either body builders or rugby players (i.e. the number of 
bodybuilders/rugby players was not specified). Taking 
into account the aforementioned considerations on the 
contraction-specificity of architectural responses, the 
individual history of resistance training in both groups 
should have been accounted for. Kawakami and col-
leagues (1993) previously reported that PA and MT are 
greater in bodybuilders compared to untrained and mod-
erately trained subjects (Lf was not investigated), but Abe 
et al. (2000, 2001), showed that Lf is greater in elite male 
100 m-sprinters compared to elite long-distance runners 
and to non-sprinters. Rather than being innate factors, 
as Fukutani and Kurihara argue, architectural adapta-
tions such as increases in Lf are indeed detectable longi-
tudinally and are training/contraction-specific (Blazevich 
et al. 2003; Franchi et al. 2014, 2015). In addition, Lf was 
measured as a straight line in Fukutani and Kurihara’s 
study: while this might not represent a problem in the 
untrained group, in hypertrophied muscle, instead, fas-
cicles show a significantly greater curvature, which par-
tially explains the increased pennation occurring with 
hypertrophy (clearly visible in bodybuilders muscle) 
(Kawakami et al. 1993). Since the fascicle curvature was 
neglected by the methodological approach used to meas-
ure Lf, the true Lf values could have been underestimated 
in the resistance-trained group. Therefore, Lf may have 
gone undetected as a result of the simplicity of the mor-
phometric analyses implemented. Thus, the chances are 
that Fukutani and Kurihara’s results were biased by the 
non-longitudinal study design and by the possible under-
estimation of Lf due to specific methodological approach. 
We agree that in some cases “muscle hypertrophy is not 
necessarily accompanied with increase in Lf” (Fukutani 
and Kurihara 2015), but these cases can only be truly 
determined by tightly controlled longitudinal studies.

We are of the opinion that the nature of fascicle length 
(Lf ) increase is highly dependent on which type of con-
traction and mechanical stimulus is predominant in spe-
cific RET programmes: thus, data on muscle architecture 
features should be cautiously interpreted, as crucial in 
the understanding of muscle structural remodelling and 
its functional characteristics.
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