867 research outputs found
Baryon charge from embedding topology and a continuous meson spectrum in a new holographic gauge theory
We study a new holographic gauge theory based on probe D4-branes in the
background dual to D4-branes on a circle with antiperiodic boundary conditions
for fermions. Field theory configurations with baryons correspond to smooth
embeddings of the probe D4-branes with nontrivial winding around an S^4 in the
geometry. As a consequence, physics of baryons and nuclei can be studied
reliably in this model using the abelian Born-Infeld action. However,
surprisingly, we find that the meson spectrum is not discrete. This is related
to a curious result that the action governing small fluctuations of the gauge
field on the probe brane is the five-dimensional Maxwell action in Minkowski
space despite the non-trivial embedding of the probe brane in the curved
background geometry.Comment: 24 pages, LaTeX, 10 figures, v4: previously ignored effects of
coupling to RR-fields included, meson spectrum qualitatively changed, v5:
journal versio
Holographic chiral magnetic spiral
We study the ground state of baryonic/axial matter at zero temperature
chiral-symmetry broken phase under a large magnetic field, in the framework of
holographic QCD by Sakai-Sugimoto. Our study is motivated by a recent proposal
of chiral magnetic spiral phase that has been argued to be favored against
previously studied phase of homogeneous distribution of axial/baryonic currents
in terms of meson super-currents dictated by triangle anomalies in QCD. Our
results provide an existence proof of chiral magnetic spiral in strong coupling
regime via holography, at least for large axial chemical potentials, whereas we
don't find the phenomenon in the case of purely baryonic chemical potential.Comment: 24 pages, 15 figure
Holographic dilepton production in a thermalizing plasma
We determine the out-of-equilibrium production rate of dileptons at rest in
strongly coupled N=4 Super Yang-Mills plasma using the AdS/CFT correspondence.
Thermalization is achieved via the gravitational collapse of a thin shell of
matter in AdS_5 space and the subsequent formation of a black hole, which we
describe in a quasistatic approximation. Prior to thermalization, the dilepton
spectral function is observed to oscillate as a function of frequency, but the
amplitude of the oscillations decreases when thermal equilibrium is approached.
At the same time, we follow the flow of the quasinormal spectrum of the
corresponding U(1) vector field towards its equilibrium limit.Comment: 21 pages, 7 figures. v2: Version accepted for publication in JHEP;
minor modifications, added reference
Holographic Brownian Motion in Magnetic Environments
Using the gauge/gravity correspondence, we study the dynamics of a heavy
quark in two strongly-coupled systems at finite temperature: Super-Yang-Mills
in the presence of a magnetic field and non-commutative Super-Yang-Mills. In
the former, our results agree qualitatively with the expected behavior from
weakly-coupled theories. In the latter, we propose a Langevin equation that
accounts for the effects of non-commutativity and we find new interesting
features. The equation resembles the structure of Brownian motion in the
presence of a magnetic field and implies that the fluctuations along
non-commutative directions are correlated. Moreover, our results show that the
viscosity is smaller than the commutative case and that the diffusion
properties of the quark are unaffected by non-commutativity. Finally, we
compute the random force autocorrelator and verify that the
fluctuation-dissipation theorem holds in the presence of non-commutativity.Comment: 34 pages. v2: typos corrected. v3: title and abstract slightly
modified in order to better reflect the contents of the paper; footnote 3 and
one reference were also added; version accepted for publication in JHE
Holographic zero sound at finite temperature in the Sakai-Sugimoto model
In this paper, we study the fate of the holographic zero sound mode at finite
temperature and non-zero baryon density in the deconfined phase of the
Sakai-Sugimoto model of holographic QCD. We establish the existence of such a
mode for a wide range of temperatures and investigate the dispersion relation,
quasi-normal modes, and spectral functions of the collective excitations in
four different regimes, namely, the collisionless quantum, collisionless
thermal, and two distinct hydrodynamic regimes. For sufficiently high
temperatures, the zero sound completely disappears, and the low energy physics
is dominated by an emergent diffusive mode. We compare our findings to
Landau-Fermi liquid theory and to other holographic models.Comment: 1+24 pages, 19 figures, PDFTeX, v2: some comments and references
added, v3: some clarifications relating to the different regimes added,
matches version accepted for publication in JHEP, v4: corrected typo in eq.
(3.18
Bosonic excitations of the AdS4 Reissner-Nordstrom black hole
We study the long-lived modes of the charge density and energy density
correlators in the strongly-coupled, finite density field theory dual to the
AdS4 Reissner-Nordstrom black hole. For small momenta q<<\mu, these correlators
contain a pole due to sound propagation, as well as a pole due to a long-lived,
purely imaginary mode analogous to the \mu=0 hydrodynamic charge diffusion
mode. As the temperature is raised in the range T\lesssim\mu, the sound
attenuation shows no significant temperature dependence. When T\gtrsim\mu, it
quickly approaches the \mu=0 hydrodynamic result where it decreases like 1/T.
It does not share any of the temperature-dependent properties of the 'zero
sound' of Landau Fermi liquids observed in the strongly-coupled D3/D7 field
theory. For such small momenta, the energy density spectral function is
dominated by the sound mode at all temperatures, whereas the charge density
spectral function undergoes a crossover from being dominated by the sound mode
at low temperatures to being dominated by the diffusion mode when T \mu^2/q.
This crossover occurs due to the changing residue at each pole. We also compute
the momentum dependence of these spectral functions and their corresponding
long-lived poles at fixed, low temperatures T<<\mu.Comment: 33 pages, 21 figures, 6 animation
Quark Number Susceptibility with Finite Chemical Potential in Holographic QCD
We study the quark number susceptibility in holographic QCD with a finite
chemical potential or under an external magnetic field at finite temperature.
We first consider the quark number susceptibility with the chemical potential.
We observe that approaching the critical temperature from high temperature
regime, the quark number susceptibility divided by temperature square develops
a peak as we increase the chemical potential, which confirms recent lattice QCD
results. We discuss this behavior in connection with the existence of the
critical end point in the QCD phase diagram. We also consider the quark number
susceptibility under the external magnetic field. We predict that the quark
number susceptibility exhibits a blow-up behavior at low temperature as we
raise the value of the magnetic field. We finally spell out some limitations of
our study.Comment: 25 pages, 3 figures, published versio
A decade of data from a specialist statewide child and adolescent eating disorder service: does local service access correspond with the severity of medical and eating disorder symptoms at presentation?
Background - Eating disorders affect up to 3% of children and adolescents, with recovery often requiring specialist treatment. A substantial literature has accrued suggesting that lower access to health care services, experienced by rural populations, has a staggering effect on health-related morbidity and mortality. The aim of this study was to evaluate whether lower service access foreshadowed a more severe medical and symptom presentation among children and adolescents presenting to a specialist eating disorders program. Method - The data source was the Helping to Outline Paediatric Eating Disorders (HOPE) Project registry (N ~1000), a prospective ongoing registry study comprising consecutive paediatric tertiary eating disorder referrals. The sample consisted of 399 children and adolescents aged 8 to 16 years (M =14.49, 92% female) meeting criteria for a DSM-5 eating disorder. Results - Consistent with the hypotheses, lower service access was associated with a lower body mass index z-score and a higher likelihood of medical complications at intake assessment. Contrary to our hypothesis, eating pathology assessed at intake was associated with higher service access. No relationship was observed between service access and duration of illness or percentage of body weight lost. Conclusions - Lower service access is associated with more severe malnutrition and medical complications at referral to a specialist eating disorder program. These findings have implications for service planning and provision for rural communities to equalize health outcomes
Synthesis and Characterization of Monodispersed Copper Colloids in Polar Solvents
A chemical reduction method for preparing monodispersed pure-phase copper colloids in water and ethylene glycol has been reported. Owing to the reduction property of ethylene glycol, the reaction rate in ethylene glycol is higher than that in water. In addition, the amount of reducing agent can be reduced largely. Ascorbic acid plays roles as reducing agent and antioxidant of colloidal copper, due to its ability to scavenge free radicals and reactive oxygen molecules. Thermogravimetric results reveal that the as-prepared copper nanoparticles have good stability, and they begin to be oxidized at above 210 °C. Polyvinyl pyrrolidone works both as size controller and polymeric capping agents, because it hinders the nuclei from aggregation through the polar groups, which strongly absorb the copper particles on the surface with coordination bonds
- …