75 research outputs found

    Rituximab therapy for juvenile-onset systemic lupus erythematosus

    Get PDF
    Rituximab (RTX), an anti-CD20 monoclonal antibody, has been proposed for use in the therapy of systemic lupus erythematosus (SLE). We present the initial long-term experience of the safety and efficacy of rituximab for treatment of SLE in children. Eighteen patients (mean age 14 ± 3 years) with severe SLE were treated with rituximab after demonstrating resistance or toxicity to conventional regimens. There was a predominance of female (16/18) and ethnic African (13/18) patients. All had lupus nephritis [World Health Organization (WHO) classes 3–5] and systemic manifestations of vasculitis. Clinical disease activity of the SLE was scored with the SLE-disease activity index 2K (SLEDAI-2K). Patients were followed-up for an average of 3.0 ± 1.3 years (range 0.5 to 4.8 years). B-cell depletion occurred within 2 weeks in all patients and persisted for up to 1 year in some. Clinical activity scores, double-stranded DNA (dsDNA) antibodies, renal function and proteinuria [urine protein to creatinine ratio (Upr/cr)] improved in 93% of the patients. Five patients required multiple courses of RTX for relapse, with B-cell repopulation. One died of infectious endocarditis related to severe immunosuppression. In conclusion, our data support the efficacy of rituximab as adjunctive treatment for SLE in children. Although rituximab was well tolerated by the majority of patients, randomized controlled trials are required to establish its long-term safety and efficacy

    Leveraging knowledge as a competitive asset? The intensity, performance and structure of universities’ entrepreneurial knowledge exchange activities at a regional level

    Get PDF
    © 2016, The Author(s). Universities are no longer considered to be isolated islands of knowledge, but as institutions increasingly engaged with a range of external partners through entrepreneurial activities. This paper examines the associations between the intensity and performance of knowledge exchange activities undertaken in UK universities with non-academic actors. Drawing on data concerning the structural factors of interactions of universities in the UK with external partners, the paper sheds further light on the nature of these activities through a prism of competitive and uncompetitive regions in order to better understand how universities may be able to leverage both their knowledge and partnerships more effectively as competitive assets. On the one hand, it is found that academics in uncompetitive regions are more intensively engaged in entrepreneurial activities but generate less income from them than their counterparts in competitive regions, suggesting that there are differences in the income-generating capacity of academics across regions. On the other hand, academic knowledge is found to be more strongly bounded within a certain distance in uncompetitive regions whilst geographical distance seems less of a hindrance to academics in competitive regions

    Metabolomic Profiling Reveals a Role for Androgen in Activating Amino Acid Metabolism and Methylation in Prostate Cancer Cells

    Get PDF
    Prostate cancer is the second leading cause of cancer related death in American men. Development and progression of clinically localized prostate cancer is highly dependent on androgen signaling. Metastatic tumors are initially responsive to anti-androgen therapy, however become resistant to this regimen upon progression. Genomic and proteomic studies have implicated a role for androgen in regulating metabolic processes in prostate cancer. However, there have been no metabolomic profiling studies conducted thus far that have examined androgen-regulated biochemical processes in prostate cancer. Here, we have used unbiased metabolomic profiling coupled with enrichment-based bioprocess mapping to obtain insights into the biochemical alterations mediated by androgen in prostate cancer cell lines. Our findings indicate that androgen exposure results in elevation of amino acid metabolism and alteration of methylation potential in prostate cancer cells. Further, metabolic phenotyping studies confirm higher flux through pathways associated with amino acid metabolism in prostate cancer cells treated with androgen. These findings provide insight into the potential biochemical processes regulated by androgen signaling in prostate cancer. Clinically, if validated, these pathways could be exploited to develop therapeutic strategies that supplement current androgen ablative treatments while the observed androgen-regulated metabolic signatures could be employed as biomarkers that presage the development of castrate-resistant prostate cancer

    Acetylation Regulates WRN Catalytic Activities and Affects Base Excision DNA Repair

    Get PDF
    Background: The Werner protein (WRN), defective in the premature aging disorder Werner syndrome, participates in a number of DNA metabolic processes, and we have been interested in the possible regulation of its function in DNA repair by post-translational modifications. Acetylation mediated by histone acetyltransferases is of key interest because of its potential importance in aging, DNA repair and transcription. Methodology/Principal Findings: Here, we have investigated the p300 acetylation mediated changes on the function of WRN in base excision DNA repair (BER). We show that acetylation of WRN increases in cells treated with methyl methanesulfonate (MMS), suggesting that acetylation of WRN may play a role in response to DNA damage. This hypothesis is consistent with our findings that acetylation of WRN stimulates its catalytic activities in vitro and in vivo, and that acetylated WRN enhances pol b-mediated strand displacement DNA synthesis more than unacetylated WRN. Furthermore, we show that cellular exposure to the histone deacetylase inhibitor sodium butyrate stimulates long patch BER in wild type cells but not in WRN depleted cells, suggesting that acetylated WRN participates significantly in this process. Conclusion/Significance: Collectively, these results provide the first evidence for a specific role of p300 mediated WRN acetylation in regulating its function during BER

    Insulin-like growth factor (IGF)-I obliterates the pregnancy-associated protection against mammary carcinogenesis in rats: evidence that IGF-I enhances cancer progression through estrogen receptor-α activation via the mitogen-activated protein kinase pathway

    Get PDF
    INTRODUCTION: Pregnancy protects against breast cancer development in humans and rats. Parous rats have persistently reduced circulating levels of growth hormone, which may affect the activity of the growth hormone/insulin-like growth factor (IGF)-I axis. We investigated the effects of IGF-I on parity-associated protection against mammary cancer. METHODS: Three groups of rats were evaluated in the present study: IGF-I-treated parous rats; parous rats that did not receive IGF-I treatment; and age-matched virgin animals, which also did not receive IGF-I treatment. Approximately 60 days after N-methyl-N-nitrosourea injection, IGF-I treatment was discontinued and all of the animal groups were implanted with a silastic capsule containing 17β-estradiol and progesterone. The 17β-estradiol plus progesterone treatment continued for 135 days, after which the animals were killed. RESULTS: IGF-I treatment of parous rats increased mammary tumor incidence to 83%, as compared with 16% in parous rats treated with 17β-estradiol plus progesterone only. Tumor incidence and average number of tumors per animal did not differ between IGF-I-treated parous rats and age-matched virgin rats. At the time of N-methyl-N-nitrosourea exposure, DNA content was lowest but the α-lactalbumin concentration highest in the mammary glands of untreated parous rats in comparison with age-matched virgin and IGF-I-treated parous rats. The protein levels of estrogen receptor-α in the mammary gland was significantly higher in the age-matched virgin animals than in untreated parous and IGF-I-treated parous rats. Phosphorylation (activation) of the extracellular signal-regulated kinase-1/2 (ERK1/2) and expression of the progesterone receptor were both increased in IGF-I-treated parous rats, as compared with those in untreated parous and age-matched virgin rats. Expressions of cyclin D(1 )and transforming growth factor-β(3 )in the mammary gland were lower in the age-matched virgin rats than in the untreated parous and IGF-I-treated parous rats. CONCLUSION: We argue that tumor initiation (transformation and fixation of mutations) may be similar in parous and age-matched virgin animals, suggesting that the main differences in tumor formation lie in differences in tumor progression caused by the altered hormonal environment associated with parity. Furthermore, we provide evidence supporting the notion that tumor growth promotion seen in IGF-I-treated parous rats is caused by activation of estrogen receptor-α via the Raf/Ras/mitogen-activated protein kinase cascade

    Small molecules, big targets: drug discovery faces the protein-protein interaction challenge.

    Get PDF
    Protein-protein interactions (PPIs) are of pivotal importance in the regulation of biological systems and are consequently implicated in the development of disease states. Recent work has begun to show that, with the right tools, certain classes of PPI can yield to the efforts of medicinal chemists to develop inhibitors, and the first PPI inhibitors have reached clinical development. In this Review, we describe the research leading to these breakthroughs and highlight the existence of groups of structurally related PPIs within the PPI target class. For each of these groups, we use examples of successful discovery efforts to illustrate the research strategies that have proved most useful.JS, DES and ARB thank the Wellcome Trust for funding.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nrd.2016.2
    • …
    corecore