121 research outputs found

    Simple synthesis of 32P-labelled inositol hexakisphosphates for study of phosphate transformations

    Get PDF
    In many soils inositol hexakisphosphate in its various forms is as abundant as inorganic phosphate. The organismal and geochemical processes that exchange phosphate between inositol hexakisphosphate and other pools of soil phosphate are poorly defined, as are the organisms and enzymes involved. We rationalized that simple enzymic synthesis of inositol hexakisphosphate labeled with 32P would greatly enable study of transformation of soil inositol phosphates when combined with robust HPLC separations of different inositol phosphates

    Control of MRSA infection and colonisation in an intensive care unit by GeneOhm MRSA assay and culture methods

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) is one of the major nosocomial pathogens. Due to the diffusion of MRSA strains in both hospital and community settings, prevention and control strategies are receiving increased attention. Approximately 25% to 30% of the population is colonised with S. aureus and 0.2% to 7% with MRSA. The BD GeneOhm MRSA real-time PCR assay offers quicker identification of MRSA-colonised patients than do culture methods. Ninety-five patients admitted to the Intensive Care Unit of IRCCS Policlinico San Matteo of Pavia (Italy) for a period > 24 h were screened for MRSA colonisation with both the culture method and the GeneOhm assay. Of the 246 nasal swabs collected from 95 patients, 36 samples were found to be positive by both methods (true-positive). 30% of colonised patients had developed the MRSA infection. Our results show that the GeneOhm MRSA assay is a valuable diagnostic tool for detecting MRSA quickly in nasal swabs. This study confirms that colonisation represents a high risk factor for MRSA infection, and that good MRSA surveillance in an Intensive Care Unit is therefore an excellent way to prevent MRSA infectio

    Interaction of Crohn's Disease Susceptibility Genes in an Australian Paediatric Cohort

    Get PDF
    Genetic susceptibility is an important contributor to the pathogenesis of Crohn's disease (CD). We investigated multiple CD susceptibility genes in an Australian paediatric onset CD cohort. Newly diagnosed paediatric onset CD patients (n = 72) and controls (n = 98) were genotyped for 34 single nucleotide polymorphisms (SNPs) in 18 genetic loci. Gene-gene interaction analysis, gene-disease phenotype analysis and genetic risk profiling were performed for all SNPs and all genes. Of the 34 SNPs analysed, four polymorphisms on three genes (NOD2, IL23R, and region 3p21) were significantly associated with CD status (p<0.05). All three CD specific paediatric polymorphisms on PSMG1 and TNFRSF6B showed a trend of association with p<0.1. An additive gene-gene interaction involving TLR4, PSMG1, TNFRSF6B and IRGM was identified with CD. Genes involved in microbial processing (TLR4, PSMG1, NOD2) were significantly associated either at the individual level or in gene-gene interactive roles. Colonic disease was significantly associated with disease SNP rs7517847 (IL23R) (p<0.05) and colonic and ileal/colonic disease was significantly associated with disease SNP rs125221868 (IBD5) and SLC22A4 & SLC22A4/5 variants (p<0.05). We were able to demonstrate genetic association of several genes to CD in a paediatric onset cohort. Several of the observed associations have not been reported previously in association with paediatric CD patients. Our findings demonstrate that CD genetic susceptibility in paediatric patients presents as a complex interaction between numerous genes

    Dopaminergic and Serotonergic Drug Use: A Nationwide Register-Based Study of Over 1 300 000 Older People

    Get PDF
    Objective: To investigate the use of dopaminergic and serotonergic drugs in elderly people. Methods: We analyzed data on age, sex and dispensed drugs for individuals aged 65yearsregisteredintheSwedishPrescribedDrugRegisterfromJulytoSeptember2008(n=1347564;8165 years registered in the Swedish Prescribed Drug Register from July to September 2008 (n = 1 347 564; 81 % of the total population aged 65 years in Sweden). Main outcome measures were dopaminergic (enhancing and/or lowering) and serotonergic (enhancing and/or lowering) drugs and combinations of these. Results: Dopaminergic and serotonergic drugs were used by 5.6 % and 13.2 % the participants, respectively. Female gender was related to use of both dopaminergic and, particularly, serotonergic drugs. Higher age was associated with use of dopamine lowering drugs and serotonergic drugs, whereas the association with use of dopamine enhancing drugs declined in the oldest old. The occurrence of combinations of dopaminergic and serotonergic drugs was generally low, with dopamine lowering + serotonin lowering drug the most common combination (1.6%). Female gender was associated with all of the combinations of dopaminergic and serotonergic drugs, whereas age showed a mixed pattern. Conclusion: Approximately one out of ten older patients uses serotonergic drugs and one out of twenty dopaminergic drugs. The frequent use of dopaminergic and serotonergic drugs in the elderly patients is a potential problem due to the fact that aging is associated with a down-regulation of both these monoaminergic systems. Future studies are needed fo

    Spontaneous focal activation of invariant natural killer T (iNKT) cells in mouse liver and kidney

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Invariant natural killer T (iNKT) cells differ from other T cells by their hyperactive effector T-cell status, in addition to the expression of NK lineage receptors and semi-invariant T-cell receptors. It is generally agreed that the immune phenotype of iNKT cells is maintained by repeated activation in peripheral tissues although no explicit evidence for such iNKT cell activity <it>in vivo </it>has so far been reported.</p> <p>Results</p> <p>We used an interferon (IFN)-γ-inducible cytoplasmic protein, Irga6, as a histological marker for local IFN-γ production. Irga6 was intensely expressed in small foci of liver parenchymal cells and kidney tubular epithelium. Focal Irga6 expression was unaffected by germ-free status or loss of TLR signalling and was totally dependent on IFN-γ secreted by T cells in the centres of expression foci. These were shown to be iNKT cells by diagnostic T cell receptor usage and their activity was lost in both CD1 d and Jα-deficient mice.</p> <p>Conclusions</p> <p>This is the first report that supplies direct evidence for explicit activation events of NKT cells <it>in vivo </it>and raises issues about the triggering mechanism and consequences for immune functions in liver and kidney.</p

    Gender Differences in White Matter Microstructure

    Get PDF
    Sexual dimorphism in human brain structure is well recognised, but little is known about gender differences in white matter microstructure. We used diffusion tensor imaging to explore differences in fractional anisotropy (FA), an index of microstructural integrity.A whole brain analysis of 135 matched subjects (90 men and 45 women) using a 1.5 T scanner. A region of interest (ROI) analysis was used to confirm those results where proximity to CSF raised the possibility of partial-volume artefact.Men had higher fractional anisotropy (FA) in cerebellar white matter and in the left superior longitudinal fasciculus; women had higher FA in the corpus callosum, confirmed by ROI.The size of the differences was substantial--of the same order as that attributed to some pathology--suggesting gender may be a potentially significant confound in unbalanced clinical studies. There are several previous reports of difference in the corpus callosum, though they disagree on the direction of difference; our findings in the cerebellum and the superior longitudinal fasciculus have not previously been noted. The higher FA in women may reflect greater efficiency of a smaller corpus callosum. The relatively increased superior longitudinal fasciculus and cerebellar FA in men may reflect their increased language lateralisation and enhanced motor development, respectively

    An NF-Y-Dependent Switch of Positive and Negative Histone Methyl Marks on CCAAT Promoters

    Get PDF
    Background: Histone tails have a plethora of different post-translational modifications, which are located differently in ‘‘open’ ’ and ‘‘closed’ ’ parts of genomes. H3K4me3/H3K79me2 and H4K20me3 are among the histone marks associated with the early establishment of active and inactive chromatin, respectively. One of the most widespread promoter elements is the CCAAT box, bound by the NF-Y trimer. Two of NF-Y subunits have an H2A-H2B-like structure. Principal findings: We established the causal relationship between NF-Y binding and positioning of methyl marks, by ChIP analysis of mouse and human cells infected with a dominant negative NF-YA: a parallel decrease in NF-Y binding, H3K4me3, H3K79me2 and transcription was observed in promoters that are dependent upon NF-Y. On the contrary, changes in the levels of H3K9-14ac were more subtle. Components of the H3K4 methylating MLL complex are not recruited in the absence of NF-Y. As for repressed promoters, NF-Y removal leads to a decrease in the H4K20me3 mark and deposition of H3K4me3. Conclusions: Two relevant findings are reported: (i) NF-Y gains access to its genomic locations independently from the presence of methyl histone marks, either positive or negative; (ii) NF-Y binding has profound positive or negative consequences on the deposition of histone methyl marks. Therefore NF-Y is a fundamental switch at the heart of decisio

    Dopaminergic and Serotonergic Drug Use: A Nationwide Register-Based Study of Over 1 300 000 Older People

    Get PDF
    OBJECTIVE: To investigate the use of dopaminergic and serotonergic drugs in elderly people. METHODS: We analyzed data on age, sex and dispensed drugs for individuals aged ≥65 years registered in the Swedish Prescribed Drug Register from July to September 2008 (n = 1,347,564; 81% of the total population aged ≥65 years in Sweden). Main outcome measures were dopaminergic (enhancing and/or lowering) and serotonergic (enhancing and/or lowering) drugs and combinations of these. RESULTS: Dopaminergic and serotonergic drugs were used by 5.6% and 13.2% the participants, respectively. Female gender was related to use of both dopaminergic and, particularly, serotonergic drugs. Higher age was associated with use of dopamine lowering drugs and serotonergic drugs, whereas the association with use of dopamine enhancing drugs declined in the oldest old. The occurrence of combinations of dopaminergic and serotonergic drugs was generally low, with dopamine lowering + serotonin lowering drug the most common combination (1.6%). Female gender was associated with all of the combinations of dopaminergic and serotonergic drugs, whereas age showed a mixed pattern. CONCLUSION: Approximately one out of ten older patients uses serotonergic drugs and one out of twenty dopaminergic drugs. The frequent use of dopaminergic and serotonergic drugs in the elderly patients is a potential problem due to the fact that aging is associated with a down-regulation of both these monoaminergic systems. Future studies are needed for evaluation of the impact of these drugs on different cognitive and emotional functions in old age

    Global Analysis of Proline-Rich Tandem Repeat Proteins Reveals Broad Phylogenetic Diversity in Plant Secretomes

    Get PDF
    Cell walls, constructed by precisely choreographed changes in the plant secretome, play critical roles in plant cell physiology and development. Along with structural polysaccharides, secreted proline-rich Tandem Repeat Proteins (TRPs) are important for cell wall function, yet the evolutionary diversity of these structural TRPs remains virtually unexplored. Using a systems-level computational approach to analyze taxonomically diverse plant sequence data, we identified 31 distinct Pro-rich TRP classes targeted for secretion. This analysis expands upon the known phylogenetic diversity of extensins, the most widely studied class of wall structural proteins, and demonstrates that extensins evolved before plant vascularization. Our results also show that most Pro-rich TRP classes have unexpectedly restricted evolutionary distributions, revealing considerable differences in plant secretome signatures that define unexplored diversity

    Mechanisms and consequences of TGF-ß overexpression by podocytes in progressive podocyte disease

    Get PDF
    In patients with progressive podocyte disease, such as focal segmental glomerulosclerosis (FSGS) and membranous nephropathy, upregulation of transforming growth factor-ß (TGF-ß) is observed in podocytes. Mechanical pressure or biomechanical strain in podocytopathies may cause overexpression of TGF-ß and angiotensin II (Ang II). Oxidative stress induced by Ang II may activate the latent TGF-ß, which then activates Smads and Ras/extracellular signal-regulated kinase (ERK) signaling pathways in podocytes. Enhanced TGF-ß activity in podocytes may lead to thickening of the glomerular basement membrane (GBM) by overproduction of GBM proteins and impaired GBM degradation in podocyte disease. It may also lead to podocyte apoptosis and detachment from the GBM, and epithelial-mesenchymal transition (EMT) of podocytes, initiating the development of glomerulosclerosis. Furthermore, activated TGF-ß/Smad signaling by podocytes may induce connective tissue growth factor and vascular endothelial growth factor overexpression, which could act as a paracrine effector mechanism on mesangial cells to stimulate mesangial matrix synthesis. In proliferative podocytopathies, such as cellular or collapsing FSGS, TGF-ß-induced ERK activation may play a role in podocyte proliferation, possibly via TGF-ß-induced EMT of podocytes. Collectively, these data bring new mechanistic insights into our understanding of the TGF-ß overexpression by podocytes in progressive podocyte disease
    corecore