1,352 research outputs found
Crystal surface defects as possible origins of cocrystal dissociation
In situ atomic force microscopy (AFM) was used to investigate topological crystal surface defects and their possible role in the dissociation of the caffeine-glutaric acid cocrystal at high relative humidity (RH). Topographical scans of the cocrystal suggest that its dissociation is triggered by localized sublimation and involves increased molecular surface diffusion, the formation of line and screw dislocations and the crystallisation of caffeine hydrate
Collapse scenarios of high-rise buildings using plastic limit analysis
Author name used in this publication: W. K. Chow2009-2010 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Interfacial tensions of systems comprising water, carbon dioxide and diluent gases at high pressures: experimental measurements and modelling with SAFT-VR Mie and square-gradient theory
Experimental interfacial tensions of the systems (H2O+CO2), (H2O+N2), (H2O+Ar), (H2O+CO2 +N2) and (H2O+CO2 +Ar) are compared with calculations based on the statistical associating fluid theory for variable range potentials of the Mie form (SAFT-VR Mie) in combination with the square-gradient theory (SGT). Comparisons are made at temperatures from (298 to 473)K and at pressures up to 60MPa. Experimental data for the systems (H2O+CO2), (H2O+N2) and (H2O+CO2 +N2) are taken from the literature. For the (H2O+Ar) and (H2O+CO2 +Ar) systems, we report new experimental interfacial-tension data at temperatures of (298.15-473.15)K and pressures from (2 to 50)MPa, measured by the pendant-drop method. The expanded uncertainties at 95% confidence are 0.05K for temperature, 70kPa for pressure, 0.016× γ for interfacial tension in the binary (Ar+H2O) system and 0.018× γ for interfacial tension in the ternary (CO2 +Ar+H2O) system. The parameters in the SAFT-VR Mie equation of state are estimated entirely from phase-equilibrium data for the pure components and binary mixtures. For pure water, the SGT influence parameter is determined from vapour-liquid surface-tension data, as is common practice. Since the other components are supercritical over most or the entire temperature range under consideration, their pure-component influence parameters are regressed by comparison with the binary interfacial-tension data. A geometric-mean combining rule is used for the unlike influence parameter in mixtures without incorporation of adjustable binary parameters. The SAFT-VR Mie+SGT approach is found to provide an excellent correlation of the surface tension of water and of the interfacial tensions of the binary systems comprising H2O with CO2 or Ar or N2. When applied to predict the interfacial tensions of the two ternary systems, generally good results are found for (H2O+CO2 +N2) while, for (H2O+CO2 +Ar), the theory performs well at high temperatures but significant deviations are found at low temperatures. Overall, the SAFT-VR Mie+SGT approach can be recommended as a means of modelling the interfacial properties of systems comprising water, carbon dioxide and diluent gases
Natural variation in life history and aging phenotypes is associated with mitochondrial DNA deletion frequency in Caenorhabditis briggsae
<p>Abstract</p> <p>Background</p> <p>Mutations that impair mitochondrial functioning are associated with a variety of metabolic and age-related disorders. A barrier to rigorous tests of the role of mitochondrial dysfunction in aging processes has been the lack of model systems with relevant, naturally occurring mitochondrial genetic variation. Toward the goal of developing such a model system, we studied natural variation in life history, metabolic, and aging phenotypes as it relates to levels of a naturally-occurring heteroplasmic mitochondrial <it>ND5 </it>deletion recently discovered to segregate among wild populations of the soil nematode, <it>Caenorhabditis briggsae</it>. The normal product of <it>ND5 </it>is a central component of the mitochondrial electron transport chain and integral to cellular energy metabolism.</p> <p>Results</p> <p>We quantified significant variation among <it>C. briggsae </it>isolates for all phenotypes measured, only some of which was statistically associated with isolate-specific <it>ND5 </it>deletion frequency. We found that fecundity-related traits and pharyngeal pumping rate were strongly inversely related to <it>ND5 </it>deletion level and that <it>C. briggsae </it>isolates with high <it>ND5 </it>deletion levels experienced a tradeoff between early fecundity and lifespan. Conversely, oxidative stress resistance was only weakly associated with <it>ND5 </it>deletion level while ATP content was unrelated to deletion level. Finally, mean levels of reactive oxygen species measured <it>in vivo </it>showed a significant non-linear relationship with <it>ND5 </it>deletion level, a pattern that may be driven by among-isolate variation in antioxidant or other compensatory mechanisms.</p> <p>Conclusions</p> <p>Our findings suggest that the <it>ND5 </it>deletion may adversely affect fitness and mitochondrial functioning while promoting aging in natural populations, and help to further establish this species as a useful model for explicit tests of hypotheses in aging biology and mitochondrial genetics.</p
Quantitative Image Analysis Reveals Distinct Structural Transitions during Aging in Caenorhabditis elegans Tissues
Aging is associated with functional and structural declines in many body systems, even in the absence of underlying disease. In particular, skeletal muscles experience severe declines during aging, a phenomenon termed sarcopenia. Despite the high incidence and severity of sarcopenia, little is known about contributing factors and development. Many studies focus on functional aspects of aging-related tissue decline, while structural details remain understudied. Traditional approaches for quantifying structural changes have assessed individual markers at discrete intervals. Such approaches are inadequate for the complex changes associated with aging. An alternative is to consider changes in overall morphology rather than in specific markers. We have used this approach to quantitatively track tissue architecture during adulthood and aging in the C. elegans pharynx, the neuromuscular feeding organ. Using pattern recognition to analyze aged-grouped pharynx images, we identified discrete step-wise transitions between distinct morphologies. The morphology state transitions were maintained in mutants with pharynx neurotransmission defects, although the pace of the transitions was altered. Longitudinal measurements of pharynx function identified a predictive relationship between mid-life pharynx morphology and function at later ages. These studies demonstrate for the first time that adult tissues undergo distinct structural transitions reflecting postdevelopmental events. The processes that underlie these architectural changes may contribute to increased disease risk during aging, and may be targets for factors that alter the aging rate. This work further demonstrates that pattern analysis of an image series offers a novel and generally accessible approach for quantifying morphological changes and identifying structural biomarkers
Behavior and Impact of Zirconium in the Soil–Plant System: Plant Uptake and Phytotoxicity
Because of the large number of sites they pollute, toxic metals that contaminate terrestrial ecosystems are increasingly of environmental and sanitary concern (Uzu et al. 2010, 2011; Shahid et al. 2011a, b, 2012a). Among such metals is zirconium (Zr), which has the atomic number 40 and is a transition metal that resembles titanium in physical and chemical properties (Zaccone et al. 2008). Zr is widely used in many chemical industry processes and in nuclear reactors (Sandoval et al. 2011; Kamal et al. 2011), owing to its useful properties like hardness, corrosion-resistance and permeable to neutrons (Mushtaq 2012). Hence, the recent increased use of Zr by industry, and the occurrence of the Chernobyl and Fukashima catastrophe have enhanced environmental levels in soil and waters (Yirchenko and Agapkina 1993; Mosulishvili et al. 1994 ; Kruglov et al. 1996)
Race and Inflammatory Bowel Disease in an Urban Healthcare System
Inflammatory bowel disease (IBD) is increasingly common among non-Caucasian populations, but interracial differences in disease characteristics and management are not well-characterized.
We tested the hypothesis that disease characteristics and management vary by race among IBD patients in an ethnically diverse healthcare system.
A retrospective study of the safety net healthcare system of San Francisco, CA, from 1996 to 2009 was undertaken. Patient records with International Classification of Diseases, 9th Revision (ICD9) codes 555.xx, 556.xx, and 558.xx were reviewed. Adult patients with confirmed IBD diagnoses were included. Interracial variations in disease characteristics and management were assessed broadly; focused between-race comparisons identified specific differences.
The 228 subjects included 77 (33.4%) with Crohn’s disease (CD), 150 (65.8%) with ulcerative colitis, and 1 (0.4%) with IBD, type unclassified. The race distribution included 105 (46.1%) white, 34 (14.9%) black, 35 (15.4%) Hispanic, and 51 (22.4%) Asian subjects. Asians and Hispanics were diagnosed at older ages (41.0 and 37.1 years, respectively) and had shorter disease durations (5.4 and 5.2 years, respectively) than whites (30.5 years at diagnosis and 8.6 years duration, P < 0.05) and blacks (31.7 years at diagnosis and 12.1 years duration, P < 0.05). CD was more common among blacks (50% of subjects) than Asians (25.5% of subjects, P = 0.015). The Montreal classification of IBD was similar among races. Hispanics were less likely than others to be treated with 5-aminosalicylates (5-ASA), immunomodulators, and steroids. Medical and surgical management was otherwise similar among races.
Modest race-based differences in IBD characteristics exist in this racially diverse healthcare system, but the management of IBD is similar among race groups
Micro/Nanoscale Parallel Patterning of Functional Biomolecules, Organic Fluorophores and Colloidal Nanocrystals
We describe the design and optimization of a reliable strategy that combines self-assembly and lithographic techniques, leading to very precise micro-/nanopositioning of biomolecules for the realization of micro- and nanoarrays of functional DNA and antibodies. Moreover, based on the covalent immobilization of stable and versatile SAMs of programmable chemical reactivity, this approach constitutes a general platform for the parallel site-specific deposition of a wide range of molecules such as organic fluorophores and water-soluble colloidal nanocrystals
- …