79 research outputs found

    A Geometric Approach to CP Violation: Applications to the MCPMFV SUSY Model

    Get PDF
    We analyze the constraints imposed by experimental upper limits on electric dipole moments (EDMs) within the Maximally CP- and Minimally Flavour-Violating (MCPMFV) version of the MSSM. Since the MCPMFV scenario has 6 non-standard CP-violating phases, in addition to the CP-odd QCD vacuum phase \theta_QCD, cancellations may occur among the CP-violating contributions to the three measured EDMs, those of the Thallium, neutron and Mercury, leaving open the possibility of relatively large values of the other CP-violating observables. We develop a novel geometric method that uses the small-phase approximation as a starting point, takes the existing EDM constraints into account, and enables us to find maximal values of other CP-violating observables, such as the EDMs of the Deuteron and muon, the CP-violating asymmetry in b --> s \gamma decay, and the B_s mixing phase. We apply this geometric method to provide upper limits on these observables within specific benchmark supersymmetric scenarios, including extensions that allow for a non-zero \theta_QCD.Comment: 34 pages, 16 eps figures, to appear in JHE

    MSSM Baryogenesis and Electric Dipole Moments: An Update on the Phenomenology

    Get PDF
    We explore the implications of electroweak baryogenesis for future searches for permanent electric dipole moments in the context of the minimal supersymmetric extension of the Standard Model (MSSM). From a cosmological standpoint, we point out that regions of parameter space that over-produce relic lightest supersymmetric particles can be salvaged only by assuming a dilution of the particle relic density that makes it compatible with the dark matter density: this dilution must occur after dark matter freeze-out, which ordinarily takes place after electroweak baryogenesis, implying the same degree of dilution for the generated baryon number density as well. We expand on previous studies on the viable MSSM regions for baryogenesis, exploring for the first time an orthogonal slice of the relevant parameter space, namely the (tan\beta, m_A) plane, and the case of non-universal relative gaugino-higgsino CP violating phases. The main result of our study is that in all cases lower limits on the size of the electric dipole moments exist, and are typically on the same order, or above, the expected sensitivity of the next generation of experimental searches, implying that MSSM electroweak baryogenesis will be soon conclusively tested.Comment: 23 pages, 10 figures, matches version published in JHE

    CP violation Beyond the MSSM: Baryogenesis and Electric Dipole Moments

    Full text link
    We study electroweak baryogenesis and electric dipole moments in the presence of the two leading-order, non-renormalizable operators in the Higgs sector of the MSSM. Significant qualitative and quantitative differences from MSSM baryogenesis arise due to the presence of new CP-violating phases and to the relaxation of constraints on the supersymmetric spectrum (in particular, both stops can be light). We find: (1) spontaneous baryogenesis, driven by a change in the phase of the Higgs vevs across the bubble wall, becomes possible; (2) the top and stop CP-violating sources can become effective; (3) baryogenesis is viable in larger parts of parameter space, alleviating the well-known fine-tuning associated with MSSM baryogenesis. Nevertheless, electric dipole moments should be measured if experimental sensitivities are improved by about one order of magnitude.Comment: 33 pages, 6 figure

    A Comprehensive Analysis of Electric Dipole Moment Constraints on CP-violating Phases in the MSSM

    Get PDF
    We analyze the constraints placed on individual, flavor diagonal CP-violating phases in the minimal supersymmetric extension of the Standard Model (MSSM) by current experimental bounds on the electric dipole moments (EDMs) of the neutron, Thallium, and Mercury atoms. We identify the four CP-violating phases that are individually highly constrained by current EDM bounds, and we explore how these phases and correlations among them are constrained by current EDM limits. We also analyze the prospective implications of the next generation of EDM experiments. We point out that all other CP-violating phases in the MSSM are not nearly as tightly constrained by limits on the size of EDMs. We emphasize that a rich set of phenomenological consequences is potentially associated with these generically large EDM-allowed phases, ranging from B physics, electroweak baryogenesis, and signals of CP-violation at the CERN Large Hadron Collider and at future linear colliders. Our numerical study takes into account the complete set of contributions from one- and two-loop EDMs of the electron and quarks, one- and two-loop Chromo-EDMs of quarks, the Weinberg 3-gluon operator, and dominant 4-fermion CP-odd operator contributions, including contributions which are both included and not included yet in the CPsuperH2.0 package. We also introduce an open-source numerical package, 2LEDM, which provides the complete set of two-loop electroweak diagrams contributing to the electric dipole moments of leptons and quarks.Comment: 23 pages, 11 figures; v2: references added, minor change

    Does zero temperature decide on the nature of the electroweak phase transition?

    Get PDF
    Taking on a new perspective of the electroweak phase transition, we investigate in detail the role played by the depth of the electroweak minimum (“vacuum energy difference”). We find a strong correlation between the vacuum energy difference and the strength of the phase transition. This correlation only breaks down if a negative eigen-value develops upon thermal corrections in the squared scalar mass matrix in the broken vacuum before the critical temperature. As a result the scalar fields slide across field space toward the symmetric vacuum, often causing a significantly weakened phase transition. Phenomenological constraints are found to strongly disfavour such sliding scalar scenarios. For several popular models, we suggest numerical bounds that guarantee a strong first order electroweak phase transition. The zero temperature phenomenology can then be studied in these parameter regions without the need for any finite temperature calculations. For almost all non-supersymmetric models with phenomenologically viable parameter points, we find a strong phase transition is guaranteed if the vacuum energy difference is greater than −8.8 × 107 GeV4. For the GNMSSM, we guarantee a strong phase transition for phenomenologically viable parameter points if the vacuum energy difference is greater than −6.9×107 GeV4. Alternatively, we capture more of the parameter space exhibiting a strong phase transition if we impose a simultaneous bound on the vacuum energy difference and the singlet mass

    An Information Theory Approach to Hypothesis Testing in Criminological Research

    Full text link
    Background: This research demonstrates how the Akaike information criterion (AIC) can be an alternative to null hypothesis significance testing in selecting best fitting models. It presents an example to illustrate how AIC can be used in this way. Methods: Using data from Milwaukee, Wisconsin, we test models of place-based predictor variables on street robbery and commercial robbery. We build models to balance explanatory power and parsimony. Measures include the presence of different kinds of businesses, together with selected age groups and social disadvantage. Results: Models including place-based measures of land use emerged as the best models among the set of tested models. These were superior to models that included measures of age and socioeconomic status. The best models for commercial and street robbery include three measures of ordinary businesses, liquor stores, and spatial lag. Conclusions: Models based on information theory offer a useful alternative to significance testing when a strong theoretical framework guides the selection of model sets. Theoretically relevant ‘ordinary businesses’ have a greater influence on robbery than socioeconomic variables and most measures of discretionary businesses

    Transcriptional correlates of the pathological phenotype in a Huntington’s disease mouse model

    Get PDF
    Huntington disease (HD) is a fatal neurodegenerative disorder without a cure that is caused by an aberrant expansion of CAG repeats in exon 1 of the huntingtin (HTT) gene. Although a negative correlation between the number of CAG repeats and the age of disease onset is established, additional factors may contribute to the high heterogeneity of the complex manifestation of symptoms among patients. This variability is also observed in mouse models, even under controlled genetic and environmental conditions. To better understand this phenomenon, we analysed the R6/1 strain in search of potential correlates between pathological motor/cognitive phenotypical traits and transcriptional alterations. HD-related genes (e.g., Penk, Plk5, Itpka), despite being downregulated across the examined brain areas (the prefrontal cortex, striatum, hippocampus and cerebellum), exhibited tissue-specific correlations with particular phenotypical traits that were attributable to the contribution of the brain region to that trait (e.g., striatum and rotarod performance, cerebellum and feet clasping). Focusing on the striatum, we determined that the transcriptional dysregulation associated with HD was partially exacerbated in mice that showed poor overall phenotypical scores, especially in genes with relevant roles in striatal functioning (e.g., Pde10a, Drd1, Drd2, Ppp1r1b). However, we also observed transcripts associated with relatively better outcomes, such as Nfya (CCAAT-binding transcription factor NF-Y subunit A) plus others related to neuronal development, apoptosis and differentiation. In this study, we demonstrated that altered brain transcription can be related to the manifestation of HD-like symptoms in mouse models and that this can be extrapolated to the highly heterogeneous population of HD patients

    Electroweak phase transitions in the secluded U(1)-prime-extended MSSM

    Full text link
    The electroweak phase transition (EWPT) in the secluded-U(1)U(1)'-extended MSSM (sMSSM) is studied. Using the effective potential at zero and finite temperatures, we search for the non-MSSM-like EWPT in which the light stop mass is larger than the top quark mass. Scanning the parameters relevant to the EWPT, the upper limits of the Higgs boson masses, which are consistent with the strong first order EWPT, are derived. For the lightest CP-even and -odd Higgs bosons, we find mH1<160m_{H_1}<160 GeV and mA1<250m_{A_1}<250 GeV, respectively. In the sMSSM, the tree-level CP violation is possible by the complex soft supersymmetry breaking masses. It is observed that such a CP-violating effect does not spoil the strong first order EWPT for the typical parameter sets.Comment: 29 pages,15 figures, JHEP style; accepted for publication in JHE
    corecore