18,197 research outputs found
Delay Aware Intelligent Transient Stability Assessment System
Transient stability assessment is a critical tool for power system design and operation. With the emerging advanced synchrophasor measurement techniques, machine learning methods are playing an increasingly important role in power system stability assessment. However, most existing research makes a strong assumption that the measurement data transmission delay is negligible. In this paper, we focus on investigating the influence of communication delay on synchrophasor-based transient stability assessment. In particular, we develop a delay aware intelligent system to address this issue. By utilizing an ensemble of multiple long short-term memory networks, the proposed system can make early assessments to achieve a much shorter response time by utilizing incomplete system variable measurements. Compared with existing work, our system is able to make accurate assessments with a significantly improved efficiency. We perform numerous case studies to demonstrate the superiority of the proposed intelligent system, in which accurate assessments can be developed with time one third less than state-of-the-art methodologies. Moreover, the simulations indicate that noise in the measurements has trivial impact on the assessment performance, demonstrating the robustness of the proposed system.published_or_final_versio
Evolution and maintenance of cooperation via inheritance of spatial neighbourhood
published_or_final_versio
8Li+alpha decay of 12B and its possible astrophysical implications
The 12B excitation energy spectrum has been obtained from coincidence
measurements of the 9Be+7Li -> 2alpha+8Li reaction at E{0}=52 MeV.
The decay of the states at excitations between 10 and 16 Mev into alpha$+8Li
has been observed for the first time. Observed alpha-decay indicates possible
cluster structure of the 12B excited states.
The influence of these states on the cross section of the astrophysically
important 8Li(alpha,n)11B and 9Be+t reactions is discussed and the results are
compared with existing results.Comment: accepted for publication in Europhysics Letter
Oxidative stress in cardiac hypertrophy: From molecular mechanisms to novel therapeutic targets.
When faced with increased workload the heart undergoes remodelling, where it increases its muscle mass in an attempt to preserve normal function. This is referred to as cardiac hypertrophy and if sustained, can lead to impaired contractile function. Experimental evidence supports oxidative stress as a critical inducer of both genetic and acquired forms of cardiac hypertrophy, a finding which is reinforced by elevated levels of circulating oxidative stress markers in patients with cardiac hypertrophy. These observations formed the basis for using antioxidants as a therapeutic means to attenuate cardiac hypertrophy and improve clinical outcomes. However, the use of antioxidant therapies in the clinical setting has been associated with inconsistent results, despite antioxidants having been shown to exert protection in several animal models of cardiac hypertrophy. This has forced us to revaluate the mechanisms, both upstream and downstream of oxidative stress, where recent studies demonstrate that apart from conventional mediators of oxidative stress, metabolic disturbances, mitochondrial dysfunction and inflammation as well as dysregulated autophagy and protein homeostasis contribute to disease pathophysiology through mechanisms involving oxidative stress. Importantly, novel therapeutic targets have been identified to counteract oxidative stress and attenuate cardiac hypertrophy but more interestingly, the repurposing of drugs commonly used to treat metabolic disorders, hypertension, peripheral vascular disease, sleep disorders and arthritis have also been shown to improve cardiac function through suppression of oxidative stress. Here, we review the latest literature on these novel mechanisms and intervention strategies with the aim of better understanding the complexities of oxidative stress for more precise targeted therapeutic approaches to prevent cardiac hypertrophy
Personality Factors Predicting Smartphone Addiction Predisposition: Behavioral Inhibition and Activation Systems, Impulsivity, and Self-control
The purpose of this study was to identify personality factor-associated predictors of smartphone addiction predisposition (SAP). Participants were 2,573 men and 2,281 women (n = 4,854) aged 20-49 years (Mean +/- SD: 33.47 +/- 7.52); participants completed the following questionnaires: the Korean Smartphone Addiction Proneness Scale (K-SAPS) for adults, the Behavioral Inhibition System/Behavioral Activation System questionnaire (BIS/BAS), the Dickman Dysfunctional Impulsivity Instrument (DDII), and the Brief Self-Control Scale (BSCS). In addition, participants reported their demographic information and smartphone usage pattern (weekday or weekend average usage hours and main use). We analyzed the data in three steps: (1) identifying predictors with logistic regression, (2) deriving causal relationships between SAP and its predictors using a Bayesian belief network (BN), and (3) computing optimal cut-off points for the identified predictors using the Youden index. Identified predictors of SAP were as follows: gender (female), weekend average usage hours, and scores on BAS-Drive, BAS-Reward Responsiveness, DDII, and BSCS. Female gender and scores on BAS-Drive and BSCS directly increased SAP. BAS-Reward Responsiveness and DDII indirectly increased SAP. We found that SAP was defined with maximal sensitivity as follows: weekend average usage hours > 4.45, BAS-Drive > 10.0, BAS-Reward Responsiveness > 13.8, DDII > 4.5, and BSCS > 37.4. This study raises the possibility that personality factors contribute to SAP. And, we calculated cut-off points for key predictors. These findings may assist clinicians screening for SAP using cut-off points, and further the understanding of SA risk factors.111413Ysciescopu
Peculiar torsion dynamical response of spider dragline silk
This work was supported by the NSFC (No. 11472114), the Natural Science Foundation of Hubei Province (No. 2015CFB394), and the Young Elite Scientist Sponsorship Program by CAST (No. 2016QNRC001). D.L. and D.J.D. thank the support from the EU's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 704292
The most dangerous hospital or the most dangerous equation?
<p>Abstract</p> <p>Background</p> <p>Hospital mortality rates are one of the most frequently selected indicators for measuring the performance of NHS Trusts. A recent article in a national newspaper named the hospital with the highest or lowest mortality in the 2005/6 financial year; a report by the organization Dr Foster Intelligence provided information with regard to the performance of all NHS Trusts in England.</p> <p>Methods</p> <p>Basic statistical theory and computer simulations were used to explore the relationship between the variations in the performance of NHS Trusts and the sizes of the Trusts. Data of hospital standardised mortality ratio (HSMR) of 152 English NHS Trusts for 2005/6 were re-analysed.</p> <p>Results</p> <p>A close examination of the information reveals a pattern which is consistent with a statistical phenomenon, discovered by the French mathematician de Moivre nearly 300 years ago, described in every introductory statistics textbook: namely that variation in performance indicators is expected to be greater in small Trusts and smaller in large Trusts. From a statistical viewpoint, the number of deaths in a hospital is not in proportion to the size of the hospital, but is proportional to the square root of its size. Therefore, it is not surprising to note that small hospitals are more likely to occur at the top and the bottom of league tables, whilst mortality rates are independent of hospital sizes.</p> <p>Conclusion</p> <p>This statistical phenomenon needs to be taken into account in the comparison of hospital Trusts performance, especially with regard to policy decisions.</p
Resistive switching and threshold switching behaviors in La 0.1Bi 0.9Fe 1-xCo xO 3 ceramics
The effects of cobalt doping on the electrical conductivity of La 0.1Bi 0.9Fe 1-xCo xO 3 (LBFCO, x=0, 0.01, 0.03) ceramics were investigated. It is found that the leakage current increases with cobalt dopant concentration in LBFCO. On the application of bias voltage LBFCO ceramics with cobalt doping exhibits resistive switching effects at room temperature and threshold switching effects at elevated temperatures (50°C and 80°C). X-ray photoelectron spectroscopy of LBFCO ceramics show that cobalt dopant is bivalent as an acceptor, which induces an enhancement of oxygen vacancy concentration in LBFCO ceramics. Possible mechanisms for both resistive switching and threshold switching effects are discussed on the basis of the interplay of bound ferroelectric charges and mobile charged defects. © 2012 American Institute of Physics.published_or_final_versio
Electrical reliability and leakage mechanisms in highly resistive multiferroic La0.1Bi0.9FeO3 ceramics
Multiferroic La0.1 Bi0.9 FeO3 (LBFO) ceramics with high resistivity were synthesized by using a modified rapid thermal process. The LBFO ceramics show very low leakage and low dielectric loss. Well saturated ferroelectric hysteresis loops and polarization switching currents have been observed. For a maximum applied electric field of 145 kV/cm, the remanent polarization is 17.8 μC/ cm2 and the coercive filed is 75 kV/cm. The dominant conduction mechanism in the LBFO ceramics has been found to be the space-charge-limited current mechanism rather than the thermal excitation mechanism. Electrical reliability related to the fatigue and polarization retention of the LBFO ceramics has also been discussed with the leakage mechanisms. © 2011 American Institute of Physics.published_or_final_versio
Refined topological amplitudes in N=1 flux compactification
We study the implication of refined topological string amplitudes in the
supersymmetric N=1 flux compactification. They generate higher derivative
couplings among the vector multiplets and graviphoton with generically
non-holomorphic moduli dependence. For a particular term, we can compute them
by assuming the geometric engineering. We claim that the Dijkgraaf-Vafa large N
matrix model with the beta-ensemble measure directly computes the higher
derivative corrections to the supersymmetric effective action of the
supersymmetric N=1$ gauge theory.Comment: 16 pages, v2: reference adde
- …