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ABSTRACT Transient stability assessment is a critical tool for power system design and operation. With
the emerging advanced synchrophasor measurement techniques, machine learning methods are playing an
increasingly important role in power system stability assessment. However, most existing research makes
a strong assumption that the measurement data transmission delay is negligible. In this paper, we focus on
investigating the influence of communication delay on synchrophasor-based transient stability assessment.
In particular, we develop a delay aware intelligent system to address this issue. By utilizing an ensemble of
multiple long short-term memory networks, the proposed system can make early assessments to achieve a
much shorter response time by utilizing incomplete system variable measurements. Compared with existing
work, our system is able to make accurate assessments with a significantly improved efficiency. We perform
numerous case studies to demonstrate the superiority of the proposed intelligent system, in which accurate
assessments can be developed with time one third less than state-of-the-art methodologies. Moreover, the
simulations indicate that noise in the measurements has trivial impact on the assessment performance,
demonstrating the robustness of the proposed system.

INDEX TERMS Transient stability assessment, communication delay, long short-term memory, phasor

measurement units, voltage phasor, intelligent system.

I. INTRODUCTION

Transient stability refers to the capability of a power system
to maintain its synchronism subject to large disturbances [1].
The transient stability issues caused by large disturbances are
considered more serious than before as the power systems
are being operated close to their stability limits to satisfy
the increasing power demand [2]. Consequently, critical
contingencies may lead to significant system failures or
power blackouts. In order to prevent such situations, system
operators need to assess the stability condition of the grid
and, when necessary, plan a collection of remedial control
actions to retain the stability. Therefore, transient stability
assessment (TSA) in real-time is regaining interest from the
community [3].

Many previous studies on TSA were conducted by using
offline dynamic simulations for a collection of credible con-
tingencies [4]. This methodology is widely adopted in design-
ing the protective and control systems for secure operations.
Meanwhile, online TSA techniques are employed to evaluate
the progress of transient dynamics of a power system in real
time.

With the gradual adoption of synchrophasor measurement
facilities, e.g., phasor measurement units (PMUs), a signif-
icant amount of effort has been devoted to utilizing real-
time system variables for TSA decision making [4]-[6].
On top of that, post-contingency remedial actions can be
taken in real-time to give guaranteed TSA results [3]. With
post-contingency system dynamics, techniques such as the
piecewise constant current load equivalent method [7] and
emergency single machine equivalent method [8] were pro-
posed for online dynamic power system security assessment.
Machine learning techniques for TSA, on the other hand,
received a lot of attention in recent years due to their relatively
low assessment computational complexity. Approaches like
pattern recognition [9], decision tree [10], artificial neural
networks (ANN) [11], support vector machine [12], and fuzzy
knowledge-based systems [13] were employed to realize fast-
response online TSA. For instance, our previous work [14]
handles TSA with a modern variant of ANN, and assess-
ment results can be generated in an online manner. These
techniques extract the relationship between system variable
measurements and their respective stability indices. With this
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relationship, new transient stability dynamics can be assessed
with minimal computational efforts.

It appears that all existing research on synchrophasor-
based online TSA implicitly assumes that the wide area
monitoring systems can provide reliable, accurate, and syn-
chronized system variable measurements and there is no data
transmission delay between PMUs and the central controller,
see [14], [15] for examples. However, although being mea-
sured in a synchronous manner thanks to PMUs, synchropha-
sors cannot reach the central controller in perfect synchrony
due to unpredictable communication link congestion and
routing delay [16]. Therefore, it is necessary to design a data
transmission delay-aware TSA system that can provide robust
and reliable assessment results given delayed or missing
system variable measurements [17].

One feasible approach to address the delayed synchropha-
sor problem is to recover those missing data by learning
the system model and other measurements when the delayed
data packets are being tramsmitted [18], [19]. However,
this approach suffers from a major drawback that the high
computational complexity of these nonlinear state estimators
results in a large delay for estimating the delayed synchropha-
sor, far from being commensurate with the PMU sampling
rate [17]. To overcome this drawback in the state estimation
approaches, a data-mining based neural network ensemble
prediction technique is utilized as an alternative in this paper.

This work focuses on establishing an intelligent system to
address the transient stability assessment problem with time-
delayed synchrophasors. We construct the system using mul-
tiple advanced machine learning techniques and heuristics,
namely Long Short-term Memory (LSTM) [20], ensemble
learning [21], rule-based decision machine heuristic, and
two optimizers (Adam [22] for neural network training, and
Social Spider Algorithm [23] for non-convex optimizations).
Utilizing the advantages of involved techniques, the pro-
posed system is able to make preliminary assessments at
the earliest possible time and revise the predictions when
more information is available. Compared with previous TSA
systems, the proposed one can achieve a faster response time
to make accurate assessments. In addition, the combination
of multiple techniques contributes to the superior assessment
performance as will be illustrated.

The remainder of this paper is organized as follows.
Section II introduces the delay aware TSA problem and
its difference from tradition TSA. Section III elaborates on
the formulation and implementation of the proposed intelli-
gent system. Section IV demonstrates numerical results on a
modified New England 10-machine test system. Finally we
conclude in Section V with a discussion of potential future
research.

Il. DELAY AWARE TRANSIENT STABILITY ASSESSMENT

Typical stability assessment methodologies introduce the idea
of observation window to facilitate their data collection pro-
cess (See [15, Sec. 2.1] for a detailed introduction). After the
clearance of a fault, the power system dynamic behavior is
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observed for a certain period of time by PMUs, and this infor-
mation is later utilized to make a stability prediction for the
future. While some recent work has improved the TSA system
by replacing the block observation with continuous observa-
tion [15], it still relies on an implicit but strong assumption:
the central controller needs to receive measurements with the
same timestamp from different data sources simultaneously.

From the communication perspective, however, it is not
realistic to postulate that no data transmission delay is
incurred over such communication links [16]. Suppose the
system measurements from PMU p reach the central con-
troller at time ¢ + Af,,, where ¢ is the time index after
the fault clearance, and At is the data transmission delay
induced by the message communication from p at t. The
previous TSA work generally assumes Az, = 0. However,
investigations on data transmission protocols demonstrate
that modeling such a delay is a complicated task and can-
not be simply replaced with a constant [24]. Moreover, the
measurements actually follow an asynchronous and disor-
dered pattern: At,; < At,; has no direct implication on
Atp 141 < Aty 41, where p and g are arbitrary PMUs.

According to the IEEE Standard for Synchrophasor Data
Transfer for Power Systems (C37.118.2-2011) [25], typical
values for the transmission delay between PMU and Phasor
Data Concentrator (PDC) are between 20 ms to 50 ms, and
this delay may be further increased due to temporary data
congestion over the communication links. The delay should
be added to the system response time the TSA calculation
time to give, which obstructs the early adoption of subsequent
control actions. Therefore, research needs to be carried out on
proposing mechanisms that can make transient assessments
without waiting for the arrival of all PMU measurements.
Such mechanisms should develop a similar TSA accuracy
compared with the state-of-the-art TSA algorithms, while
making assessments far earlier than those made with full
communication delays. In this paper we aim to devise an
intelligent delay aware TSA system to achieve this objective.
The proposed system copes with the asynchronous arrival
of synchrophasor data, and minimizes their influence on the
system response time.

1Il. PROPOSED DELAY AWARE ASSESSMENT SYSTEM

In this section, we elaborate on how we design an intelligent
system to perform TSA considering delayed synchrophasor
data packets arriving in an asynchronous manner. We will first
introduce Long-short Term Memory (LSTM) networks, and
the reason why we use such networks to construct the system.
Then we overview the structure of the system followed by
the illustrations of other building blocks and the decision
machine. Finally we will explain the overall work flow of the
proposed delay aware TSA system.

A. AN INTRODUCTION TO LONG SHORT-TERM MEMORY

ANN is one of the automatic machine learning techniques and
it has been employed in a variety of disciplines in the last few
decades [26]. One major merit of this technique that makes it
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suitable for online data processing is its excellent responsive-
ness [26]. ANN functions like a black box. By training with
supervised datasets, ANN learns the mathematical relation-
ship of inputs X and outputs Y, or their distributions [27].
LSTM is a variant of ANN [20]. From the functional point
of view, LSTM differs from the conventional ANN in that
it considers the temporal data correlation in X. In addition,
LSTM generally outperforms other time-dependent variants
of ANN, e.g., recurrent neural network, as it avoids the
occurrence of the “vanishing gradient problem”, which dete-
riorates the temporal correlation extraction efficiency [20].

Fm‘gct Gate Input Gate Output Gate ,Ttl
G

[ Slgmold | ,_Slgmmd ] | lanh
he_y

FIGURE 1. The LSTM memory block with the memory cell C;.

Fig. 1 illustrates one memory block of a typical LSTM
network. This block utilizes the input data with a specific
timestamp as well as the memory from the previous times-
tamp for feature extraction. The processed information, or
memory, is stored in the memory cell C; and passed in the
next time slot [20]. The output data 4, is also generated based
on C;. This process is depicted in Fig. 2.

Ce1 Ce Ces1 Ciiz
Memory Memory Memory
he_y Block he Block hess Block heso
X+ Xt +2)

FIGURE 2. Unrolled form of a typical LSTM network.

As illustrated, the LSTM memory block comprises three
gates, namely, the forget, input, and output gates; the forget
and input gates manage the existing network memory and
the new input information, while the output gate controls the
output information. To compute C;, these gates manipulate
the temporal data correlation stored in the LSTM network as
follows:

f; = Sigmoid(Wyx; + Urh;_1 + by) (1a)
iy = Sigmoid(W;x; + U;h,_; + b;) (1b)
¢; = tanh(Wex; + Uch,—1 4+ be) (1¢)
C, =f xC;_| +1i; *¢. (1d)

Consequently, the output is generated at the output gate, given
by
0o, = o(Wox; + Ush,—1 +by) (22)
h; = o; x tanh(C;). (2b)

In (1) and (2), * is the element-wise product, Sigmoid(x) =
(1 ~|—e"‘)_1 is the sigmoid function, and W, U, b are matrices
corresponding to the LSTM learning parameters.
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With the LSTM memory blocks, neural networks can
accept a sequence of inputs Xi,Xp,---,Xs, ---,Xr and
develop timestamped outputs hy, hp, --- , hy, - -+, hy, where
T is the length of input data. Output h; are generated with the
complete existing knowledge from time 1 to ¢. For instance,
h; is calculated solely using x;, and hj3 is generated by xi,
X, and x3. Utilizing this characteristic, LSTM can develop
preliminary results once the first set of input x; is available.
Therefore, the proposed LSTM-based system has the capa-
bility to generate very early TSA results, which can be later
revised when more data is available. It meets the delay aware
TSA system requirements as stated in Section II.

B. STRUCTURE OF PROPOSED ENSEMBLE-BASED
INTELLIGENT SYSTEM

Ensemble of neural networks is a learning paradigm in which
multiple neural networks are employed to solve a problem.
In statistical learning, it is widely recognized that such ensem-
bles demonstrate improved generalization capabilities com-
pared to standalone networks [21]. In an ensemble, classifi-
cation errors of one single network can be compensated by
others, to provide an enhanced robustness of the complete
system.

Due to the outstanding performance of neural network
ensembles for classification tasks, we develop a novel LSTM
ensemble-based intelligent system for efficient TSA. The
structure of such a system is shown in Fig. 3. In the sys-
tem, one Main Block LSTM network (the striped block in
Fig. 3) is employed to develop a Primary Result using post-
contingency bus voltage magnitude and angle measurements
of the power system. Meanwhile, N Ensemble Block net-
works generate N Secondary results in parallel. While pri-
mary and secondary results share the same characteristics and
purposes, we consider the primary result more reliable, as
the main block has a larger network structure, which will be
elaborated on in the following sub-sections, than individual
secondary results. These N + 1 results are jointly considered
in a rule-based Decision Machine to produce the final TSA
result. The purpose of introducing this machine is to gather
enough system stability assessment information from multi-
ple sources before making a final conclusion.

| Voltage Phasor Measurements

“Ensemble Block”
l -~ LSTM Networks
/

“Main Block”
LSTM Network

Primary Result

Secondary Results
Rule-based
Decision Machine

TSA Result

FIGURE 3. Structure of the proposed ensemble-based intelligent system
for TSA.
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Besides the different sizes of the main and ensemble
blocks, their ways of addressing communication delays are
also different. The main block can develop TSA results
despite the incompleteness of input data due to latency, but the
primary results may sometimes be inaccurate. The ensemble
blocks will only develop their results when all required input
measurements are known, and the secondary results are uti-
lized to correct the primary result. Consequently, when most
measurements are not received, the main block can already
gives preliminary assessments. With the increase of received
data, ensemble blocks start to correct the primary result if
necessary.

C. MAIN BLOCK

As illustrated in Fig. 3, the main block is employed to develop
primary results for generating the final TSA result in the
proposed system. As this result is considered essential -
this part will be further elaborated in Section III-E - we
pay more attention to model its input-output dependency by
employing a Deep Neural Network (DNN) with four layers of
LSTM blocks and two fully-connected hidden neuron layers.
The structure of this DNN is depicted in Fig. 4. While the
LSTM blocks are capable of extracting the temporal data
dependency from the input data, the neuron layers translate
the extracted features to human-readable assessment results.
A final Sigmoid function is utilized to cast the results into
(0, 1). Owing to its superior capability of modeling highly
non-linear relationships, this main block network is expected
to output a more reliable result than the secondary results
produced by the ensemble blocks, each of which contains
significantly fewer number of layers.

LSTM |4 p[LSTM |
¥

1
pLLSTM |
1

| Hidden |

Main Block

Ensemble Block

FIGURE 4. Structure of the main block and ensemble blocks.

1) OFFLINE TRAINING PROCESS

Training the main block is conducted offline with all bus
voltage phasor data obtained by contingency simulations.
Using 50/60-Hz sampling, the normalized measured voltage
phasors are presented in the form of MZ*T | where B is the
number of buses.! The input data M can be sliced along the

n practice, it can be more economically efficient to install PMUs on a
subset of buses in the power grid. In such cases, mBxT may also include
“measurements’ which are actually computed using power flow model.
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time axis, resulting in vectors M; = [M;, M2, -+ ,Mp],
where Mj; is the system variable measurements of bus b
at timestamp ¢ after the fault clearance. Each M; comprises
measurements from different buses with an identical times-
tamp. The output stability assessment y is obtained by observ-
ing the generation angle derivation and presented in 0-1
binary form.?

Given a collection of C training cases {M(), y(,:)}f:1 where
Y(c) 1s the assessment y of case c, the training process aims to
obtain the parameters of the LSTM [20] and fully-connected
neuron layers [26]. In this paper, we employ the Adam opti-
mizer [22] to find the optimal values for the above-mentioned
parameters, and the binary cross entropy error function is
selected as the objective function:

C
minimize — Z[y(c) log y?g) + (1 — y(e)) log(1 — y’(‘g))], 3)

c=1

where yj(‘g) is the actual assessment result of M. with the
main block.

2) ONLINE ASSESSMENT PROCESS

Online assessment cannot be conducted in the same way
as training. As introduced in Section III-A, the proposed
main block accepts one or multiple M, vectors instead of
an integral M block as input and outputs y;. However, some
values in M; can be unknown when the first several measure-
ments in M, reach the central controller. In all previous work,
e.g., [3]-[7], [15], the system may hang on until all syn-
chrophasors in M; become ready, but the waiting time
(max{Az,,})is significantly increased compared with prema-
ture assessments cases.

In this work, we employ a ‘“‘zero-padding” scheme to pad
all unknown values in M; with zeros. In addition, a user-
defined parameter ¢ is introduced to determine whether a
specific M, is included in the input. It is included only when
1) the percentage of known values in M; is greater than ¢,
and 2) M,_; is also included when ¢t > 1. In this design,
the value zero in the input is considered “‘unknown’, and the
main block can start developing primary results much earlier
than waiting for all synchrophasors.

During the online assessment process, one stability assess-
ment result is developed whenever a new synchrophasor
reaches the central control and M # &. This primary result
is output to the decision machine to develop the TSA result.

D. ENSEMBLE BLOCK

While the main block is expected to develop considerably
reliable assessment results, it is still inevitable that the DNN
may suffer from the problem of overfitting which can result in
undermined accuracy on unknown test cases. What is worse,
missing synchrophasors introduce noise to the input data,
which further compromise the prediction performance.

2In this paper, assessment result 1 means that the system will remain stable
and 0 is unstable.
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In order to provide more information for the assessment
system, multiple ensemble blocks are employed, each of
which comprises two layers of LSTM and a fully-connected
hidden neuron layer. Similarly, the results are post-processed
by a Sigmoid function. Fig. 4 presents a comparison on the
rolled structure of a main block and an ensemble block.

As the ensemble blocks have a much simpler network
structure, they are less aware to outliers in the input charac-
teristics at the expense of limited abilities to model complex
data with scarce neurons. Thus only a small portion of all
the available synchrophasors are utilized as the inputs of an
ensemble block. Meanwhile, potential overfitting to the cho-
sen PMU data can bias the results. Multiple ensembles with
voltage phasors generated by different PMUs are required to
give sufficient secondary results for the decision machine.

In such a system, how to choose voltage phasor collections
by PMUs as network input for different ensemble blocks
greatly influences the overall prediction accuracy. To opti-
mally allocate PMU collections for each ensemble block as
data input, a PMU input optimization problem is formulated.
The objective function is constructed by considering the sys-
tem voltage phasor observabilities of multiple sets of PMU.
The overall formulation of the problem is given as follows:

. 1 1
maximize -} 5 0i+ ) (01 = 1 D50, (4a)
subject to |S;| = |[P/N], Vie{l,2,---,N—1}, (4b)

Usi=.2,---, P, (4c)
S,‘ﬁSjZ@, Vi,je{l1,2,--- ,N}, i #j, (4d)

where S; is the set of PMUs for ensemble block i, N and
P are the total numbers of ensemble blocks and PMUs,
respectively, and O; is the voltage phasor observability of
PMU set S;. The constraints in (4b) limit the total number
of PMUs for each ensemble block. The constraints in (4c)
dictate that all PMUs in the system are considered in one
ensemble block, and (4d) guarantee that each PMU can only
be included by one ensemble block. This combinatorial opti-
mization problem can be solved by using a suitable meta-
heuristic and we adopt a recently proposed Social Spider
Algorithm (SSA) [23] as the problem solver in this paper.
Note that the problem solver is among the possible techniques
to tackle (4a). Alternative methods may be further investi-
gated in future research.

After determining the inputs for each ensemble block,
the same training method used in the main block can also
be adopted to train these blocks offline. Meanwhile, online
assessments are made only when the input vectors M, are
available as a whole for ensemble blocks. The computational
expense can be reduced when compared with the main block,
and the assessed secondary results are passed to the decision
machine for further processing.

E. DECISION MACHINE
Recall that both the primary and secondary results made
by the main and ensemble blocks are values between zero
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and one. However, practitioners would prefer a meaningful
conclusion on stability instead of statements like *“‘the system
will be 35% stable”. Thus it is essential to develop a transfor-
mation scheme to map the fuzzy real-valued results into the
affirmative O-1 binary form.

Here we adopt a series of threshold values 6; € (0, 0.5)
for each block to map the network result y; to binary values.
Recall that both the main block and the ensemble blocks
can generate a sequence of y, values at different timestamps,
each value has a corresponding binary mapping, denoted z;
as follows:

1 (Stable) fory, > 1 — 6,
Zzr = 10 (Unstable) fory; < 6, 5)
? (Unknown) otherwise.

The result is considered reliable when we have either z; = 1
or zz = 0. The threshold 6; of each block in the system
is determined offline by solving the threshold optimization
problem:

min (1—-A)xw+D-—1. (6)
61, ,0r

Here w € (0,00) is a weight coefficient, A and D are
the testing accuracy and average cycles required to gener-
ate a reliable result. When solving (6), the training cases
{M(c), ¥(¢)} are employed to generate the value of A using
the binary cross entropy error function. Different values of
6 can result in different 0-1 assessment results z; from the
same y;, thus A is developed from the control variables.
Variable D is calculated with the method introduced in [15],
where proper 6 values help the system make assessments
early. Due to space limitations, the relationship among 6’s,
A, and D is not provided here. Interested readers may refer
to [15] for more details. This optimization problem can also
be solved by an appropriate metaheuristic (e.g., SSA), and
the determined 6; values remain constant during the online
stability assessment process.

Besides the above transformation process, another main
objective achieved by this decision machine is to combine
multiple results and to develop a final assessment result.
The basic idea is to make assessments largely based on the
primary result, and use the secondary results for correction.
As the primary and secondary results are generated at dif-
ferent time instants, the decision machine follows the charts
given in Fig. 5 to consolidate these results. If the machine
receives the primary result, it requires one secondary result
for confirmation. Meanwhile, if one or multiple secondary
results are available, the system still need to wait for the
arrival of the primary one. Therefore, we have the following
rules:

o The algorithm starts when the first reliable result is gen-
erated by either the main block or any of the ensemble
blocks.

« If the main block makes a reliable assessment first, the
algorithm will wait for the first secondary result from
any ensemble block.
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o If the secondary result is identical to the primary one,
the algorithm outputs the result. Otherwise, another sec-
ondary result is requested, and considered as the final
assessment.

o If the first result is from an ensemble block, the
algorithm will wait until the main block generates its
assessment.

« If only one secondary result is made before the primary
one, the algorithm compares them and makes a final
assessment if they are identical. Otherwise, another sec-
ondary result is requested.

o If multiple secondary results are made before the pri-
mary one, the algorithm uses the more popular result as
the final assessment.

They are summarized in Fig. 5. During this whole process,
each block can only have one assessment at a time. New
assessments from the same block overwrites the existing one.

ait until any
reliable result,

Wait until an; -
X Y Wait for another
reliable .
reliable result
secondary result

Output Wait for another Wait for the
the result reliable reliable primary
secondary result result
! Y :
Output Output Cobunt t?% .
the result the result number orLs
and 1’s
Output the
popular one
v
(_stop )

FIGURE 5. Flow chart of generating final assessment result with the
rule-based decision machine.

F. WORK FLOW OF THE INTELLIGENT SYSTEM

The complete work flow of our proposed system can be
divided into two phases as shown in Fig. 6, namely, an offline
training phase and an online assessment phase. Utilizing
the power system model as well as pre-defined contingency
cases, post-contingency system dynamics are calculated in
an offline manner. The dynamics are later employed to train
the main block and ensemble blocks of the assessment sys-
tem. Meanwhile, the power system topology is considered to
develop network inputs of each ensemble block. After train-
ing all blocks in the system, their respective threshold values
are optimized using the same input data. The optimized val-
ues as well as the blocks are regarded as the trained ensemble-
based intelligent system for the online TSA process.
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Optimize the Generate post-
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! !
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training training
[ |
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values for each block

l

Ensemble-based
intelligent system

Contingencies

dUIPO

Real-time

synchrophasors, assessment

Stability }
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FIGURE 6. Work flow of the proposed intelligent system.

_/ Wait for any
synchrophasor,
2
Construct input
data matrix M

Any new M, with
all values ready?

Any M, can be inpul
of main block?

Pad unknown
values in M,
with zeros

i

Generate the Generate binary Generate the
primary result —{ results with their «— secondary result
yM respective 0, Vi

an decision maching
generate result?

FIGURE 7. Online assessment of the proposed intelligent system.

Fig. 7 depicts the online work flow of our proposed
ensemble-based intelligent system for TSA. The assessment
is triggered when any new synchrophasor reaches the central
controller. The synchrophasor is placed in the respective
position in the input matrix M. The system then checks if
either the main block or any ensemble blocks can generate
new results y; with the incomplete input matrix M. If so,
the generated results are mapped to binary values using pre-
optimized 6; values. The calculated z; results are placed in the
decision machine for final assessment generation. The system
stops when the machine outputs an assessment stating either
the system will or will not be stable in the future.

IV. NUMERICAL STUDIES

We evaluate the performance of the proposed intelligent
system through dynamic simulation on the New England
10-machine system benchmark [28] comprising 39 buses,
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10 synchronous generators, 34 transmission lines, and
12 transformers. It has 19 constant loads consuming a total
6097.1MW and 1408.9 MVAr. This system is an abstraction
of an actual power system in New England [2]. Among all
generators, G10 represents the aggregated generation from
the rest of the eastern interconnection. All other generators
are equipped with an IEEE Type-1 (IEEET1) exciter [29] and
a WSCC Type G (BPA_GG) governor with parameters taken
from [2]. PMUs are assumed installed on all buses.

A. TRAINING AND TESTING PREPARATION

The collection of training and testing cases are generated by
time-domain simulation of post-contingency system dynam-
ics. These cases comprise the PMU measurements of voltage
phasors of all buses in the system and their transient stability
0-1 classifications for selected N — 2 contingencies. The loss
of any transmission lines or transformers is considered as an
N —1 contingency. Then the loss of any remaining component
is considered as an N — 2 contingency.

Furthermore, we consider four operating conditions in
which the consumed power is set to 80%, 90%, 100%, and
110% of the nominal load level, respectively. A three-phase
short-circuit fault is applied at either of the terminal buses
of the removed components in N — 2 contingencies with a
fault clearance time of 0.2 seconds. As a result, 4058 transient
contingency cases are created. All cases are simulated for
ten seconds after the fault clearance, and are considered
unstable if any generator is out of step. The time-domain
post-contingency system simulation is performed with
DIgSILENT PowerFactory [30], and all simulations are con-
ducted on an Intel Core i7 CPU at 3.40 GHz clock speed.

The generated transient contingencies are randomly
divided into a training set and a testing set. To comply with the
3:1 training/testing ratio [15], 3044 cases are used for training
the system, while the remaining 1014 are employed to test the
system performance. By adopting this configuration, one can
easily tell if the system has over-fit, in which the performance
on the training set is superior but that on the testing set is
unsatisfactory.

Based on the observation result of [31], the transmission
delay At, ; is formulated as a shifted gamma distribution with
k = 20 and § = 2.0. Although this delay model can only
approximate the general one-way delay over the transmission
network, real world delay data can be applied to our proposed
system and the performance gain shall not be influenced
significantly.

All system parameters are listed in Table 1. Among these
defined parameters, the number of ensemble blocks N are

TABLE 1. Simulation Parameters.

System Parameters
) O.B[N 3to7[w 100
SSA Parameters
|pop] 30 mazx_iter 2000 rqe 1.0
Pe 0.7 | pm 0.1

17236

set to five values, i.e., 3 to 7. This means that in the test,
Problem (4a) is optimized five times and each optimization
generates N blocks. Asaresult,3+4+54+6+7 = 25
ensemble blocks are created to facilitate the generation of
secondary results.

B. IMPACT OF DELAYED MEASUREMENTS

We first compare the proposed delay aware TSA mechanism,
labeled by “Delay aware TSA” in the sequel, with conven-
tional techniques in which the assessments are generated after
receiving all measurements. For fair comparison, we employ
the existing fastest TSA mechanism proposed in [15], labeled
by “Synchronous TSA (STSA)”, for performance assess-
ment. The communication latency values for both mecha-
nisms are identical, and STSA is carried out when the con-
trol center can calculate the complete system state. In addi-
tion, we further assume that STSA can generate assessments
with information of the first post-contingency cycle, and the
calculation is instantaneous.

The simulation results are presented in Table 2, where
the better performing results are in bold. In this table, the
assessment accuracy and response times for both mecha-
nisms are presented. The response times for synchronous
TSA in practice are always greater than the listed value, thus
prepended with “>"" signs. It can be concluded that delayed
measurements have a significant impact on the TSA response
time. On average, the proposed delay aware TSA can achieve
around 1.7x speedup than state-of-the-art conventional TSA
mechanism. In addition, thanks to all the block networks in
delay aware TSA, the proposed mechanism generates correct
assessments in all test cases, and can provide almost perfect
accuracy in the training cases.

TABLE 2. Comparison of assessment accuracy and response time.

Response Time (ms) Accuracy (%)
Average Best Worst Training  Testing
Delay aware TSA 48.0 354 79.9 99.8 100.0
Synchronous TSA >82.6 >589 >1413 N/A 99.4

Mechanism

For completeness of performance assessment, we also
measure the average training time for the proposed delay
aware TSA. On average, the training time for the main block
is 1341 seconds, and that for each of the ensemble blocks is
176.2 seconds. Therefore, the whole system can be trained
within 5746 seconds sequentially. Moreover, as the training
of different blocks are independently, it is simple and effective
to train the networks paralleled. In such a case, the proposed
system can adapt to significant changes in operating condi-
tions in little time. Note that the training data already contains
different operating conditions. So insignificant changes can
be addressed using the same network without re-training.

C. ASSESSMENT ACCURACY AND RESPONSE TIME

As presented in Section IV-B, the proposed delay aware
TSA can achieve a superior performance compared with
conventional mechanisms. It is of interest to determine which
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component(s) of the mechanism contribute to the perfor-
mance. In this test, we separate the delay aware TSA mecha-
nisms into two sub-systems, composed of the main block and
all ensemble blocks, respectively. For the ensemble blocks
sub-system, final assessment is made when at least two
ensembles generate identical secondary assessment results.
In addition, we also investigate the impact of measurement
inclusion parameter ¢.

The simulation results are compared in Table 3. It can
be seen that neither main block nor ensemble blocks can
generate perfect assessment results, but combining them
together with the decision machine yields superior perfor-
mance. In addition, the proposed mechanism can have a
slightly shorter average response time than either of the sub-
systems. So we can conclude that the system performance is
contributed to by all major components of the delay aware
TSA, namely the main block, ensemble blocks, and the deci-
sion machine.

TABLE 3. Comparison of different variants of proposed delay aware
TSA mechanism.

L Response Time (ms) Accuracy (%)

Mechanism Average Best Worst | Training  Testing

Delay aware TSA 48.0 354 79.9 99.8 100.0
Main Block, ¢ = 0.5 48.9 31.2 937 94.7 92.9
Ensemble Blocks 49.5 366 793 99.5 98.4
Main Block, ¢ = 1.0 85.4 463 1447 99.7 99.4
Main Block, ¢ = 0.8 70.9 415 1043 98.0 97.5
Main Block, ¢ = 0.6 56.1 35.0 89.3 95.1 93.8
Main Block, ¢ = 0.4 45.7 279  65.7 91.9 92.4

In addition, it can be summarized that the parameter ¢
plays an important role in balancing the trade-off between
assessment accuracy and response time. While a larger ¢
leads to more accurate assessments, a small ¢ makes the sys-
tem wait for less measurements, rendering a faster response
speed.

The rates of assessments with respect to response time are
depicted in Fig. 8 for a better understanding of the results.
The figure depicts that the proposed delay aware TSA can
generally develop most assessment in the shortest average
response time. It can also be observed that while main block
sub-system with ¢ = 0.5 can start making assessment earliest
among all mechanisms, it suffers from random latency spikes

50 |-

N
@
T

Ratio of making an assessment (%)

!
60 70 80 90 100

w
S
IS
S
9]
S

Time after fault clearance (ms)

FIGURE 8. Rate of assessments with respect to response time. “DTSA” is
the proposed delay aware TSA mechanism, “M1.0” is the main block
sub-system with ¢ = 1.0, “M0.5” is the main block sub-system with

¢ = 0.5, and “EB"” is the ensemble blocks sub-system.
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in some test cases and has to wait for the delay measurements
in these cases. Both conclusions accord with the results in
Table 3, and demonstrate the superiority of the proposed
mechanism.

D. TRANSIENT ASSESSMENT ON NOISY-DELAYED
MEASUREMENTS

All previous simulation assumes that the PMU measure-
ments, whenever they arrive at the central controller, can
represent the system dynamic state accurately. However, in
practice these measurements may be noisy. Therefore, addi-
tional numerical simulations are carried out to study the influ-
ence of noisy and delayed measurements on the proposed
system for TSA.

According to IEEE Standard for Synchrophasor Data
Transfer for Power Systems (C37.118.2-2011) [25], all PMUs
complying with the standard shall generate system variable
measurements with a total vector error less than 1%. Thus
in this paper we follow the approach introduced in [17] to
generate noisy test cases:

VLi0y =V /0y + AV .6y, (7

where V /6y is the measured voltage phasor, V /0y is the
actual voltage phasor, and AV /A#fy is the noise phasor
imposed, which satisfies a truncated complex normal distri-
bution [17]. The newly generated test cases are employed
to test the assessment performance of the proposed system
trained using noiseless training cases.

The assessment result is summarized in Table 4 and Fig.
9. It can be observed from the comparison that data noise
makes trivial influence on the assessment accuracy and
response time. This is contributed by the outstanding classi-
fication ability of neural networks on noisy data [22], [26],
and the introduction of multiple networks to form an
ensemble [21].

TABLE 4. Comparison of noisy and noiseless data.

. Response Time (ms) Accuracy (%)
Mechanism Average Best Worst | Training  Testing
Delay aware TSA 48.0 354 79.9 99.8 100.0
Noisy Data 48.2 31.7 83.5 99.8 99.9

100

80

— Noiseless data

— - Noisy data

Ratioofmakinganassessment(%)

T
30 40 50 60 70 80 90 100
Time after fault clearance (ms)

FIGURE 9. Performance of proposed intelligent system on making early
assessments with noiseless and noisy data.
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V. CONCLUSION

In this paper, an intelligent system is proposed to address the
data transmission delay in an online TSA process. This sys-
tem is based on Long-short Term Memory (LSTM) ensemble
neural network with strategically designed decision machine.
In particular, one large LSTM network called main block
and multiple small LSTM networks called ensemble blocks
cooperate to provide a collection of transient assessments
considering different input data for the decision machine
to make a final TSA conclusion. Different from existing
TSA work, the proposed system can adapt to the delayed
PMU measurements and make reliable assessments at the
earliest possible time to facilitate later control actions. Sim-
ulation results show that the developed system outperforms
conventional TSA methodologies in terms of the average
response time and maintains a perfect assessment accuracy.
In addition, the simulation demonstrates that both the main
block and ensemble blocks contribute to superior TSA per-
formance. The proposed system is also tested with noisy
system measurement data, and the result indicates that the
system is robust with noisy data complying with the related
IEEE standard.

The contributions of this paper are summarized as follows:

« We propose a delay aware transient stability assessment
to address the impact of communication delay in the
process of transient stability assessment. The delay is
critical for fast response time, but has not been consid-
ered in the previous literature.

o We develop an LSTM ensemble-based intelligent sys-
tem to handle the assessment problem with delayed
and missing data caused by communication delay. The
system can be further extended to more power system
data-driven applications.

o« We assess the system on a widely adopted testbed,
and provide configuration guidelines to fully utilize its
assessment capability. The simulation results demon-
strate a significant improvement in system response time
while maintaining a perfect accuracy.

Future efforts will focus on the availability of PMUs in
the system. It is assumed that PMUs are installed on all
available buses in the system, which may be practical due
to the decreasing PMU prices. However it is still of interest
to find the minimal number and locations of PMUs needed
to fulfill the assessment task. Besides, different assess-
ment predictors may contribute to a better average response
time.
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