14 research outputs found

    The Application of DNA Barcodes for the Identification of Marine Crustaceans from the North Sea and Adjacent Regions

    Get PDF
    During the last years DNA barcoding has become a popular method of choice for molecular specimen identification. Here we present a comprehensive DNA barcode library of various crustacean taxa found in the North Sea, one of the most extensively studied marine regions of the world. Our data set includes 1,332 barcodes covering 205 species, including taxa of the Amphipoda, Copepoda, Decapoda, Isopoda, Thecostraca, and others. This dataset represents the most extensive DNA barcode library of the Crustacea in terms of species number to date. By using the Barcode of Life Data Systems (BOLD), unique BINs were identified for 198 (96.6%) of the analyzed species. Six species were characterized by two BINs (2.9%), and three BINs were found for the amphipod species Gammarus salinus Spooner, 1947 (0.4%). Intraspecific distances with values higher than 2.2% were revealed for 13 species (6.3%). Exceptionally high distances of up to 14.87% between two distinct but monophyletic clusters were found for the parasitic copepod Caligus elongatus Nordmann, 1832, supporting the results of previous studies that indicated the existence of an overlooked sea louse species. In contrast to these high distances, haplotype-sharing was observed for two decapod spider crab species, Macropodia parva Van Noort & Adema, 1985 and Macropodia rostrata (Linnaeus, 1761), underlining the need for a taxonomic revision of both species. Summarizing the results, our study confirms the application of DNA barcodes as highly effective identification system for the analyzed marine crustaceans of the North Sea and represents an important milestone for modern biodiversity assessment studies using barcode sequence

    The Effect of Carbon Credits on Savanna Land Management and Priorities for Biodiversity Conservation

    Get PDF
    Carbon finance offers the potential to change land management and conservation planning priorities. We develop a novel approach to planning for improved land management to conserve biodiversity while utilizing potential revenue from carbon biosequestration. We apply our approach in northern Australia's tropical savanna, a region of global significance for biodiversity and carbon storage, both of which are threatened by current fire and grazing regimes. Our approach aims to identify priority locations for protecting species and vegetation communities by retaining existing vegetation and managing fire and grazing regimes at a minimum cost. We explore the impact of accounting for potential carbon revenue (using a carbon price of US14pertonneofcarbondioxideequivalent)onpriorityareasforconservationandtheimpactofexplicitlyprotectingcarbonstocksinadditiontobiodiversity.OurresultsshowthatimprovedmanagementcanpotentiallyraiseapproximatelyUS14 per tonne of carbon dioxide equivalent) on priority areas for conservation and the impact of explicitly protecting carbon stocks in addition to biodiversity. Our results show that improved management can potentially raise approximately US5 per hectare per year in carbon revenue and prevent the release of 1–2 billion tonnes of carbon dioxide equivalent over approximately 90 years. This revenue could be used to reduce the costs of improved land management by three quarters or double the number of biodiversity targets achieved and meet carbon storage targets for the same cost. These results are based on generalised cost and carbon data; more comprehensive applications will rely on fine scale, site-specific data and a supportive policy environment. Our research illustrates that the duel objective of conserving biodiversity and reducing the release of greenhouse gases offers important opportunities for cost-effective land management investments

    Alien plant invasions in tropical and sub-tropical savannas: patterns, processes and prospects

    Full text link

    The fate of an immigrant: Ensis directus in the eastern German Bight

    Get PDF
    We studied Ensis directus in the subtidal (7–16 m depth) of the eastern German Bight. The jackknife clam that invaded in the German Bight in 1978 has all characteristics of a successful immigrant: Ensis directus has a high reproductive capacity (juveniles, July 2001: Amrumbank 1,914 m-2, Eiderstedt/Vogelsand: 11,638 m-2), short generation times and growths rapidly: maximum growth rates were higher than in former studies (mean: 3 mm month-1, 2nd year: up to 14 mm month-1). Ensis directus uses natural mechanisms for rapid dispersal, occurs gregariously and exhibits a wide environmental tolerance. However, optimal growth and population-structure annual gaps might be influenced by reduced salinity: at Vogelsand (transition area of Elbe river), maximum growth was lower (164 mm) than at the Eiderstedt site (outer range of Elbe river, L max = 174 mm). Mass mortalities of the clams are probably caused by washout (video inspections), low winter temperature and strong storms. Ensis directus immigrated into the community finding its own habitat on mobile sands with strong tidal currents. Recent studies on E. directus found that the species neither suppresses native species nor takes over the position of an established one which backs up our study findings over rather short time scales. On the contrary, E. directus seems to favour the settlement of some deposit feeders. Dense clam mats might stabilise the sediment and function as a sediment-trap for organic matter. Ensis directus has neither become a nuisance to other species nor developed according to the ‘boom-and-bust’ theory. The fate of the immigrant E. directus rather is a story of a successful trans-ocean invasion which still holds on 23 years after the first findings in the outer elbe estuary off Vogelsand

    The Ecosystem

    No full text

    Alien plant invasions in tropical and sub-tropical savannas: patterns, processes and prospects

    Get PDF
    Biological invasions affect virtually all ecosystems on earth, but the degree to which different regions and biomes are invaded, and the quality of information from different regions, varies greatly. A large body of literature exists on the invasion of savannas in the Neotropics and northern Australia where invasive plants, especially African grasses, have had major impacts. Less has been published on plant invasions in African savannas, except for those in South Africa. Negative impacts due to plant invasions in African savannas appear to be less severe than in other regions at present. As savannas cover about 60% of the continent, with tens of millions of people relying on the services they provide, it is timely to assess the current status of invasions as a threat to these ecosystems. We reviewed the literature, contrasting the African situation with that of Neotropical and Australian savannas. A number of drivers and explanatory factors of plant invasions in savannas have been described, mostly from the Neotropics and Australia. These include herbivore presence, residence time, intentional introductions for pasture improvements, fire regimes, the physiology of the introduced species, and anthropogenic disturbance. After comparing these drivers across the three regions, we suggest that the lower extent of alien plant invasions in African savannas is largely attributable to: (1) significantly lower rates of intentional plant introductions and widespread plantings (until recently); (2) the role of large mammalian herbivores in these ecosystems; (3) historical and biogeographical issues relating to the regions of origin of introduced species; and (4) the adaptation of African systems to fire. We discuss how changing conditions in the three regions are likely to affect plant invasions in the future
    corecore