74 research outputs found

    Consistency of Lambda-Lambda hypernuclear events

    Full text link
    Highlights of Lambda-Lambda emulsion events are briefly reviewed. Given three accepted events, shell-model predictions based on p-shell Lambda hypernuclear spectroscopic studies are shown to reproduce the Lambda-Lambda (LL) binding energies of LL10Be and LL13B in terms of the LL binding energy of LL6He. Predictions for other species offer judgement on several alternative assignments of the LL13B KEK-E176 event, and on the assignments LL11Be and LL12Be suggested recently for the KEK-E373 HIDA event. The predictions of the shell model, spanning a wide range of A values, are compared with those of cluster models, where the latter are available.Comment: Based on talk given by Avraham Gal at EXA 2011, Vienna, September 2011; Proceedings version prepared for the journal Hyperfine Interactions; v2--slight changes, matches published versio

    Climate change and the long-term viability of the World’s busiest heavy haul ice road

    Get PDF
    Climate models project that the northern high latitudes will warm at a rate in excess of the global mean. This will pose severe problems for Arctic and sub-Arctic infrastructure dependent on maintaining low temperatures for structural integrity. This is the case for the economically important Tibbitt to Contwoyto Winter Road (TCWR)—the world’s busiest heavy haul ice road, spanning 400 km across mostly frozen lakes within the Northwest Territories of Canada. In this study, future climate scenarios are developed for the region using statistical downscaling methods. In addition, changes in lake ice thickness are projected based on historical relationships between measured ice thickness and air temperatures. These projections are used to infer the theoretical operational dates of the TCWR based on weight limits for trucks on the ice. Results across three climate models driven by four RCPs reveal a considerable warming trend over the coming decades. Projected changes in ice thickness reveal a trend towards thinner lake ice and a reduced time window when lake ice is at sufficient thickness to support trucks on the ice road, driven by increasing future temperatures. Given the uncertainties inherent in climate modelling and the resultant projections, caution should be exercised in interpreting the magnitude of these scenarios. More certain is the direction of change, with a clear trend towards winter warming that will reduce the operation time window of the TCWR. This illustrates the need for planners and policymakers to consider future changes in climate when planning annual haulage along the TCWR

    Evidence and perceptions of rainfall change in Malawi: Do maize cultivar choices enhance climate change adaptation in sub-Saharan Africa?

    Get PDF
    Getting farmers to adopt new cultivars with greater tolerance for coping with climatic extremes and variability is considered as one way of adapting agricultural production to climate change. However, for successful adaptation to occur, an accurate recognition and understanding of the climate signal by key stakeholders (farmers, seed suppliers and agricultural extension services) is an essential precursor. This paper presents evidence based on fieldwork with smallholder maize producers and national seed network stakeholders in Malawi from 2010 to 2011, assessing understandings of rainfall changes and decision-making about maize cultivar choices. Our findings show that preferences for short-season maize cultivars are increasing based on perceptions that season lengths are growing shorter due to climate change and the assumption that growing shorter-season crops represents a good strategy for adapting to drought. However, meteorological records for the two study areas present no evidence for shortening seasons (or any significant change to rainfall characteristics), suggesting that short-season cultivars may not be the most suitable adaptation option for these areas. This demonstrates the dangers of oversimplified climate information in guiding changes in farmer decision-making about cultivar choice

    When fast logic meets slow belief: Evidence for a parallel-processing model of belief bias.

    Get PDF
    Two experiments pitted the default-interventionist account of belief bias against a parallel-processing model. According to the former, belief bias occurs because a fast, belief-based evaluation of the conclusion pre-empts a working-memory demanding logical analysis. In contrast, according to the latter both belief-based and logic-based responding occur in parallel. Participants were given deductive reasoning problems of variable complexity and instructed to decide whether the conclusion was valid on half the trials or to decide whether the conclusion was believable on the other half. When belief and logic conflict, the default-interventionist view predicts that it should take less time to respond on the basis of belief than logic, and that the believability of a conclusion should interfere with judgments of validity, but not the reverse. The parallel-processing view predicts that beliefs should interfere with logic judgments only if the processing required to evaluate the logical structure exceeds that required to evaluate the knowledge necessary to make a belief-based judgment, and vice versa otherwise. Consistent with this latter view, for the simplest reasoning problems (modus ponens), judgments of belief resulted in lower accuracy than judgments of validity, and believability interfered more with judgments of validity than the converse. For problems of moderate complexity (modus tollens and single-model syllogisms), the interference was symmetrical, in that validity interfered with belief judgments to the same degree that believability interfered with validity judgments. For the most complex (three-term multiple-model syllogisms), conclusion believability interfered more with judgments of validity than vice versa, in spite of the significant interference from conclusion validity on judgments of belief

    GLI1 Confers Profound Phenotypic Changes upon LNCaP Prostate Cancer Cells That Include the Acquisition of a Hormone Independent State

    Get PDF
    The GLI (GLI1/GLI2) transcription factors have been implicated in the development and progression of prostate cancer although our understanding of how they actually contribute to the biology of these common tumours is limited. We observed that GLI reporter activity was higher in normal (PNT-2) and tumourigenic (DU145 and PC-3) androgen-independent cells compared to androgen-dependent LNCaP prostate cancer cells and, accordingly, GLI mRNA levels were also elevated. Ectopic expression of GLI1 or the constitutively active ΔNGLI2 mutant induced a distinct cobblestone-like morphology in LNCaP cells that, regarding the former, correlated with increased GLI2 as well as expression of the basal/stem-like markers CD44, β1-integrin, ΔNp63 and BMI1, and decreased expression of the luminal marker AR (androgen receptor). LNCaP-GLI1 cells were viable in the presence of the AR inhibitor bicalutamide and gene expression profiling revealed that the transcriptome of LNCaP-GLI1 cells was significantly closer to DU145 and PC-3 cells than to control LNCaP-pBP (empty vector) cells, as well as identifying LCN2/NGAL as a highly induced transcript which is associated with hormone independence in breast and prostate cancer. Functionally, LNCaP-GLI1 cells displayed greater clonal growth and were more invasive than control cells but they did not form colonies in soft agar or prostaspheres in suspension suggesting that they do not possess inherent stem cell properties. Moreover, targeted suppression of GLI1 or GLI2 with siRNA did not reverse the transformed phenotype of LNCaP-GLI1 cells nor did double GLI1/GLI2 knockdowns activate AR expression in DU145 or PC-3 cells. As such, early targeting of the GLI oncoproteins may hinder progression to a hormone independent state but a more detailed understanding of the mechanisms that maintain this phenotype is required to determine if their inhibition will enhance the efficacy of anti-hormonal therapy through the induction of a luminal phenotype and increased dependency upon AR function

    Influence of ocean–atmospheric oscillations on lake ice phenology in eastern North America

    Get PDF
    Our results reveal long-term trends in ice out dates (1836–2013) for twelve lakes in Maine, New Brunswick and New Hampshire, in eastern North America. The trends are remarkably coherent between lakes (rs = 0.462–0.933, p < 0.01) and correlate closely with the March–April (MA) instrumental temperature records from the region (rs = 0.488–0.816, p < 0.01). This correlation permits use of ice out dates as a proxy to extend the shorter MA instrumental record (1876–2013). Mean ice out dates trended progressively earlier during the recovery from the Little Ice Age through to the 1940s, and gradually became later again through to the late 1970s, when ice out dates had returned to values more typical of the late nineteenth century. Post-1970’s ice out dates resumed trending toward earlier dates, with the twenty-first century being characterized by the earliest ice out dates on record. Spectral and wavelet time series analysis indicate that ice out is influenced by several teleconnections including the Quasi-biennial Oscillation, El Niño-Southern Oscillation, North Atlantic Oscillation, as well as a significant correlation between inland lake records and the Atlantic Multidecadal Oscillation. The relative influence of these teleconnections is variable with notable shifts occurring after ~1870, ~1925, and ~1980–2000. The intermittent expression of these cycles in the ice out and MA instrumental record is not only influenced by absolute changes in the intensity of the various teleconnections and other climate drivers, but through phase interference between teleconnections, which periodically damps the various signals

    Pathways towards coexistence with large carnivores in production systems

    Get PDF
    Coexistence between livestock grazing and carnivores in rangelands is a major challenge in terms of sustainable agriculture, animal welfare, species conservation and ecosystem function. Many effective non-lethal tools exist to protect livestock from predation, yet their adoption remains limited. Using a social-ecological transformations framework, we present two qualitative models that depict transformative change in rangelands grazing. Developed through participatory processes with stakeholders from South Africa and the United States of America, the models articulate drivers of change and the essential pathways to transition from routine lethal management of carnivores towards mutually beneficial coexistence. The pathways define broad actions that incorporate multiple values in grazing systems including changes to livestock management practices, financial support, industry capacity building, research, improved governance and marketing initiatives. A key fnding is the new concept of ‘Predator Smart Farming’, a holistic and conscientious approach to agriculture, which increases the resilience of landscapes, animals (domesticated and wild) and rural livelihoods. Implementation of these multiple pathways would lead to a future system that ensures thriving agricultural communities, secure livelihoods, reduced violence toward animals, and landscapes that are productive and support species conservation and coexistence
    corecore