15 research outputs found

    The male fetal biomarker INSL3 reveals substantial hormone exchange between fetuses in early pig gestation

    Get PDF
    The peptide hormone INSL3 is uniquely produced by the fetal testis to promote the transabdominal phase of testicular descent. Because it is fetal sex specific, and is present in only very low amounts in the maternal circulation, INSL3 acts as an ideal biomarker with which to monitor the movement of fetal hormones within the pregnant uterus of a polytocous species, the pig. INSL3 production by the fetal testis begins at around GD30. At GD45 of the ca.114 day gestation, a time at which testicular descent is promoted, INSL3 evidently moves from male to female allantoic compartments, presumably impacting also on the female fetal circulation. At later time-points (GD63, GD92) there is less inter-fetal transfer, although there still appears to be significant INSL3, presumably of male origin, in the plasma of female fetuses. This study thus provides evidence for substantial transfer of a peptide hormone between fetuses, and probably also across the placenta, emphasizing the vulnerability of the fetus to extrinsic hormonal influences within the uterus

    The climatic and genetic heritage of Italian goat breeds with genomic SNP data

    Get PDF
    Local adaptation of animals to the environment can abruptly become a burden when faced with rapid climatic changes such as those foreseen for the Italian peninsula over the next 70 years. Our study investigates the genetic structure of the Italian goat populations and links it with the environment and how genetics might evolve over the next 50 years. We used one of the largest national datasets including > 1000 goats from 33 populations across the Italian peninsula collected by the Italian Goat Consortium and genotyped with over 50 k markers. Our results showed that Italian goats can be discriminated in three groups reflective of the Italian geography and its geo\u2011political situation preceding the country unification around two centuries ago. We leveraged the remarkable genetic and geographical diversity of the Italian goat populations and performed landscape genomics analysis to disentangle the relationship between genotype and environment, finding 64 SNPs intercepting genomic regions linked to growth, circadian rhythm, fertility, and inflammatory response. Lastly, we calculated the hypothetical future genotypic frequencies of the most relevant SNPs identified through landscape genomics to evaluate their long\u2011term effect on the genetic structure of the Italian goat populations. Our results provide an insight into the past and the future of the Italian local goat populations, helping the institutions in defining new conservation strategy plans that could preserve their diversity and their link to local realities challenged by climate change

    Association analyses of candidate single nucleotide polymorphisms on reproductive traits in swine

    No full text
    The ability to identify young females with superior reproduction would have a large economic impact on commercial swine production. Previous studies have discovered SNP associated with economically important traits such as litter size, growth rate, and feed intake. The objective of this study was to test for association of candidate SNP with sow prolificacy reproductive traits in gilts of a Landrace-Duroc-Yorkshire composite population. Association analyses regressed additive ( A), dominant ( D), and imprinting ( I) SNP effects on each trait with an animal model. A carnitine palmitoyltransferase 1A SNP and a glycogen synthase 1 SNP were associated with age at puberty (AP; D = 10 d; P = 0.0037 and A = 3.8 d; P = 0.0078, respectively). Four IGF2 SNP were associated with AP as well, having additive or dominant effects (3.2 to 5.8 d; P <= 0.0052). Two mannosidase 2B2 SNP and 2 prolactin receptor (PRLR) SNP were also associated with AP. Solute carrier 22, subfamily member 5 SNP was weakly associated with AP (D = 3.9 d; P < 0.10). Polymorphisms within glycogen synthase 1 and protein kinase AMP-activated, gamma 3 noncatalytic subunit had associations with ovulation rate. Estrogen receptor (ESR) 1, ESR2, PPAR gamma coactivator 1, and IGFBP3 SNP were significantly associated with weaning-to-estrus interval. Two PRLR SNP were associated with total number of piglets born ( A = 0.57 piglets; P = 0.0095 and D = 0.61 piglets; P = 0.0016, respectively). A SNP within PRLR was also associated with number of piglets born alive ( D = 0.61; P = 0.0016). The PPAR. coactivator 1 SNP was associated with total number of piglets born (D = 0.38 piglets; P = 0.0391) and number of piglets born alive (D = 0.53 piglets; P = 0.0032). The SNP within ESR1 ( A = 0.65 piglets; P = 0.0950), ESR2 ( A = -0.33 piglets; P = 0.0176), IGF2 SNP ( A = -0.26 piglets; P = 0.0032), and IGFBP3 SNP ( D = 0.35 piglets; P = 0.0683) were associated with number of piglets born dead. A leptin SNP was associated with mummified fetuses ( D = 0.09 piglets; P = 0.0978). Many of the SNP analyzed in this study are from genes involved in regulation of metabolism, suggesting that there is an important link between physiological events associated with reproduction and energy utilization. Furthermore, these production and growth trait SNP may serve to assist in selection of young females for superior reproductive performance
    corecore