9 research outputs found

    Differences in antigen-specific CD4+ responses to opportunistic infections in HIV infection

    No full text
    HIV-infected individuals with severe immunodeficiency are at risk of opportunistic infection (OI). Tuberculosis (TB) may occur without substantial immune suppression suggesting an early and sustained adverse impact of HIV on Mycobacterium tuberculosis (MTB)-specific cell mediated immunity (CMI). This prospective observational cohort study aimed to observe differences in OI-specific and MTB-specific CMI that might underlie this. Using polychromatic flow cytometry, we compared CD4+ responses to MTB, cytomegalovirus (CMV), Epstein-Barr virus (EBV) and Candida albicans in individuals with and without HIV infection. MTB-specific CD4+ T-cells were more polyfunctional than virus specific (CMV/EBV) CD4+ T-cells which predominantly secreted IFN-gamma (IFN-γ) only. There was a reduced frequency of IFN-γ and IL-2 (IL-2)-dual-MTB-specific cells in HIV-infected individuals, which was not apparent for the other pathogens. MTB-specific cells were less differentiated especially compared with CMV-specific cells. CD127 expression was relatively less frequent on MTB-specific cells in HIV co-infection. MTB-specific CD4+ T-cells PD-1 expression was infrequent in contrast to EBV-specific CD4+ T-cells. The variation in the inherent quality of these CD4+ T-cell responses and impact of HIV co-infection may contribute to the timing of co-infectious diseases in HIV infection

    A mycolic acid-specific CD1-restricted T cell population contributes to acute and memory immune responses in human tuberculosis infection.

    No full text
    Current tuberculosis (TB) vaccine strategies are largely aimed at activating conventional T cell responses to mycobacterial protein antigens. However, the lipid-rich cell wall of Mycobacterium tuberculosis (M. tuberculosis) is essential for pathogenicity and provides targets for unconventional T cell recognition. Group 1 CD1-restricted T cells recognize mycobacterial lipids, but their function in human TB is unclear and their ability to establish memory is unknown. Here, we characterized T cells specific for mycolic acid (MA), the predominant mycobacterial cell wall lipid and key virulence factor, in patients with active TB infection. MA-specific T cells were predominant in TB patients at diagnosis, but were absent in uninfected bacillus Calmette-Guérin-vaccinated (BCG-vaccinated) controls. These T cells were CD1b restricted, detectable in blood and disease sites, produced both IFN-γ and IL-2, and exhibited effector and central memory phenotypes. MA-specific responses contracted markedly with declining pathogen burden and, in patients followed longitudinally, exhibited recall expansion upon antigen reencounter in vitro long after successful treatment, indicative of lipid-specific immunological memory. T cell recognition of MA is therefore a significant component of the acute adaptive and memory immune response in TB, suggesting that mycobacterial lipids may be promising targets for improved TB vaccines

    Comparative studies of the stability of various fluids under electrical discharge and thermal stresses

    No full text
    It is a well-known fact that the service reliability of power transformers largely depends upon the condition of the dielectric fluid. The steady deterioration (under the influence of the multiple stresses) of the insulation has an important impact on the condition of the transformers themselves. This contribution reports some investigations on some commercially available ester, silicone and mineral oil fluids. Some of their physicochemical properties are studied by submitting them to various stresses: electrical, thermal and oxidation. Many comparisons are made according to the quality test results of mineral oil, as it is very familiar to the transformer industry. A new technique using a reactive free radical reagent, 2,2-diphenyl-1- picrylhydrazyl (DPPH), added to both new oil for reference purposes and different aged oil to assess free radical concentration is presented. The gassing tendency under either thermal or electrical stress, along with the physicochemical properties of the fluids, is affected; it is assessed with the production of oxidative aging by-products. The gassing performance characteristics of natural ester fluids are far superior to those of conventional mineral oil. A significant reduction in insulation aging rate was observed with synthetic ester fluids
    corecore