250 research outputs found
Identification and Visualization of CD8+ T Cell Mediated IFN-γ Signaling in Target Cells during an Antiviral Immune Response in the Brain
CD8+ T cells infiltrate the brain during an anti-viral immune response. Within the brain CD8+ T cells recognize cells expressing target antigens, become activated, and secrete IFNγ. However, there are no methods to recognize individual cells that respond to IFNγ. Using a model that studies the effects of the systemic anti-adenoviral immune response upon brain cells infected with an adenoviral vector in mice, we describe a method that identifies individual cells that respond to IFNγ. To identify individual mouse brain cells that respond to IFNγ we constructed a series of adenoviral vectors that contain a transcriptional response element that is selectively activated by IFNγ signaling, the gamma-activated site (GAS) promoter element; the GAS element drives expression of a transgene, Cre recombinase (Ad-GAS-Cre). Upon binding of IFNγ to its receptor, the intracellular signaling cascade activates the GAS promoter, which drives expression of the transgene Cre recombinase. We demonstrate that upon activation of a systemic immune response against adenovirus, CD8+ T cells infiltrate the brain, interact with target cells, and cause an increase in the number of cells expressing Cre recombinase. This method can be used to identify, study, and eventually determine the long term fate of infected brain cells that are specifically targeted by IFNγ. The significance of this method is that it will allow to characterize the networks in the brain that respond to the specific secretion of IFNγ by anti-viral CD8+ T cells that infiltrate the brain. This will allow novel insights into the cellular and molecular responses underlying brain immune responses
Medical school faculty discontent: prevalence and predictors of intent to leave academic careers
<p>Abstract</p> <p>Background</p> <p>Medical school faculty are less enthusiastic about their academic careers than ever before. In this study, we measured the prevalence and determinants of intent to leave academic medicine.</p> <p>Methods</p> <p>A 75-question survey was administered to faculty at a School of Medicine. Questions addressed quality of life, faculty responsibilities, support for teaching, clinical work and scholarship, mentoring and participation in governance.</p> <p>Results</p> <p>Of 1,408 eligible faculty members, 532 (38%) participated. Among respondents, 224 (40%; CI95: 0.35, 0.44) reported that their careers were not progressing satisfactorily; 236 (42%; CI95: 0.38, 0.46) were "seriously considering leaving academic medicine in the next five years." Members of clinical departments (OR = 1.71; CI95: 1.01, 2.91) were more likely to consider leaving; members of inter-disciplinary centers were less likely (OR = 0.68; CI95: 0.47, 0.98). The predictors of "serious intent to leave" included: Difficulties balancing work and family (OR = 3.52; CI95: 2.34, 5.30); inability to comment on performance of institutional leaders (OR = 3.08; CI95: 2.07, 4.72); absence of faculty development programs (OR = 3.03; CI95: 2.00, 4.60); lack of recognition of clinical work (OR = 2.73; CI95: 1.60, 4.68) and teaching (OR = 2.47; CI95: 1.59, 3.83) in promotion evaluations; absence of "academic community" (OR = 2.67; CI95: 1.86, 3.83); and failure of chairs to evaluate academic progress regularly (OR = 2.60; CI95: 1.80, 3.74).</p> <p>Conclusion</p> <p>Faculty are a medical school's key resource, but 42 percent are seriously considering leaving. Medical schools should refocus faculty retention efforts on professional development programs, regular performance feedback, balancing career and family, tangible recognition of teaching and clinical service and meaningful faculty participation in institutional governance.</p
Delayed mGluR5 activation limits neuroinflammation and neurodegeneration after traumatic brain injury
<p>Abstract</p> <p>Background</p> <p>Traumatic brain injury initiates biochemical processes that lead to secondary neurodegeneration. Imaging studies suggest that tissue loss may continue for months or years after traumatic brain injury in association with chronic microglial activation. Recently we found that metabotropic glutamate receptor 5 (mGluR5) activation by (<it>RS</it>)-2-chloro-5-hydroxyphenylglycine (CHPG) decreases microglial activation and release of associated pro-inflammatory factors <it>in vitro</it>, which is mediated in part through inhibition of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Here we examined whether delayed CHPG administration reduces chronic neuroinflammation and associated neurodegeneration after experimental traumatic brain injury in mice.</p> <p>Methods</p> <p>One month after controlled cortical impact traumatic brain injury, C57Bl/6 mice were randomly assigned to treatment with single dose intracerebroventricular CHPG, vehicle or CHPG plus a selective mGluR5 antagonist, 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine. Lesion volume, white matter tract integrity and neurological recovery were assessed over the following three months.</p> <p>Results</p> <p>Traumatic brain injury resulted in mGluR5 expression in reactive microglia of the cortex and hippocampus at one month post-injury. Delayed CHPG treatment reduced expression of reactive microglia expressing NADPH oxidase subunits; decreased hippocampal neuronal loss; limited lesion progression, as measured by repeated T2-weighted magnetic resonance imaging (at one, two and three months) and white matter loss, as measured by high field <it>ex vivo </it>diffusion tensor imaging at four months; and significantly improved motor and cognitive recovery in comparison to the other treatment groups.</p> <p>Conclusion</p> <p>Markedly delayed, single dose treatment with CHPG significantly improves functional recovery and limits lesion progression after experimental traumatic brain injury, likely in part through actions at mGluR5 receptors that modulate neuroinflammation.</p
The risk of angiosarcoma following primary breast cancer
Lymphangiosarcoma of the upper extremity is a rare and aggressive tumour reported to occur following post-mastectomy lymphoedema (Stewart–Treves syndrome). Haemangiosarcoma, a related rare tumour, has occasionally been reported to occur in the breast following irradiation. We conducted a case-control study using the University of Southern California-Cancer Surveillance Program, the population-based cancer registry for Los Angeles County, to evaluate the relationship between invasive female breast cancer and subsequent upper extremity or chest lymphangiosarcoma and haemangiosarcoma together referred to as angiosarcoma. Cases were females diagnosed between 1972 and 1995 with angiosarcoma of the upper extremity (n = 20) or chest (n = 48) who were 25 years of age or older and residing in Los Angeles County when diagnosed. Other sarcomas at the same anatomic sites were also studied. Controls were females diagnosed with cancers other than sarcoma during the same time period (n = 266 444). Cases and controls were then compared with respect to history of a prior invasive epithelial breast cancer. A history of breast cancer increased the risk of upper extremity angiosarcoma by more than 59-fold (odds ratio [OR] = 59.3, 95% confidence interval [95% CI] = 21.9–152.8). A strong increase in risk after breast cancer was also observed for angiosarcoma of the chest and breast (OR = 11.6, 95% CI = 4.3–26.1) and for other sarcomas of the chest and breast (OR = 3.3, 95% CI = 1.1–1.7). © 1999 Cancer Research Campaig
Tyrosine kinase signalling in breast cancer: Tyrosine kinase-mediated signal transduction in transgenic mouse models of human breast cancer
The ability of growth factors and their cognate receptors to induce mammary epithelial proliferation and differentiation is dependent on their ability to activate a number of specific signal transduction pathways. Aberrant expression of specific receptor tyrosine kinases (RTKs) has been implicated in the genesis of a significant proportion of sporadic human breast cancers. Indeed, mammary epithelial expression of activated RTKs such as ErbB2/neu in transgenic mice has resulted in the efficient induction of metastatic mammary tumours. Although it is clear from these studies that activation these growth factor receptor signalling cascades are directly involved in mammary tumour progression, the precise interaction of each of these signalling pathways in mammary tumourigenesis and metastasis remains to be elucidated. The present review focuses on the role of several specific signalling pathways that have been implicated as important components in RTK-mediated signal transduction. In particular, it focuses on two well characterized transgenic breast cancer models that carry the polyomavirus middle T(PyV mT) and neu oncogenes
Eye movements and brain oscillations to symbolic safety signs with different comprehensibility
Background: The aim of this study was to investigate eye movements and brain oscillations to symbolic safety signs with different comprehensibility. Methods: Forty-two young adults participated in this study, and ten traffic symbols consisting of easy-to-comprehend and hard-to-comprehend signs were used as stimuli. During the sign comprehension test, real-time eye movements and spontaneous brain activity [electroencephalogram (EEG) data] were simultaneously recorded. Results: The comprehensibility level of symbolic traffic signs significantly affects eye movements and EEG spectral power. The harder to comprehend the sign is, the slower the blink rate, the larger the pupil diameter, and the longer the time to first fixation. Noticeable differences on EEG spectral power between easy-to-comprehend and hard-to-comprehend signs are observed in the prefrontal and visual cortex of the human brain. Conclusions: Sign comprehensibility has significant effects on real-time nonintrusive eye movements and brain oscillations. These findings demonstrate the potential to integrate physiological measures from eye movements and brain oscillations with existing evaluation methods in assessing the comprehensibility of symbolic safety signs.open
A Tractable Experimental Model for Study of Human and Animal Scabies
Scabies, a neglected parasitic disease caused by the microscopic mite Sarcoptes scabiei, is a major driving force behind bacterial skin infections in tropical settings. Aboriginal and Torres Strait Islander peoples are nearly twenty times more likely to die from acute rheumatic fever and rheumatic heart disease than individuals from the wider Australian community. These conditions are caused by bacterial pathogens such as Group A streptococci, which have been linked to underlying scabies infestations. Community based initiatives to reduce scabies and associated disease have expanded, but have been threatened in recent years by emerging drug resistance. Critical biological questions surrounding scabies remain unanswered due to a lack of biomedical research. This has been due in part to a lack of either a suitable animal model or an in vitro culture system for scabies mites. The pig/mite model reported here will be a much needed resource for parasite material and will facilitate in vivo studies on host immune responses to scabies, including relations to associated bacterial pathogenesis, and more detailed studies of molecular evolution and host adaptation. It represents the missing tool to extrapolate emerging molecular data into an in vivo setting and may well allow the development of clinical interventions
The Circadian Response of Intrinsically Photosensitive Retinal Ganglion Cells
Intrinsically photosensitive retinal ganglion cells (ipRGC) signal environmental
light level to the central circadian clock and contribute to the pupil light
reflex. It is unknown if ipRGC activity is subject to extrinsic (central) or
intrinsic (retinal) network-mediated circadian modulation during light
entrainment and phase shifting. Eleven younger persons (18–30 years) with
no ophthalmological, medical or sleep disorders participated. The activity of
the inner (ipRGC) and outer retina (cone photoreceptors) was assessed hourly
using the pupil light reflex during a 24 h period of constant environmental
illumination (10 lux). Exogenous circadian cues of activity, sleep, posture,
caffeine, ambient temperature, caloric intake and ambient illumination were
controlled. Dim-light melatonin onset (DLMO) was determined from salivary
melatonin assay at hourly intervals, and participant melatonin onset values were
set to 14 h to adjust clock time to circadian time. Here we demonstrate in
humans that the ipRGC controlled post-illumination pupil response has a
circadian rhythm independent of external light cues. This circadian variation
precedes melatonin onset and the minimum ipRGC driven pupil response occurs post
melatonin onset. Outer retinal photoreceptor contributions to the inner retinal
ipRGC driven post-illumination pupil response also show circadian variation
whereas direct outer retinal cone inputs to the pupil light reflex do not,
indicating that intrinsically photosensitive (melanopsin) retinal ganglion cells
mediate this circadian variation
Experience of road and other trauma by the opiate dependent patient: a survey report
Background: Trauma plays an important role in the experience of many patients with substance use disorder, but is relatively under-studied particularly in Australia. The present survey examined the lifetime prevalence of various forms of trauma including driving careers in the context of relevant medical conditions. Methods: A survey was undertaken in a family medicine practice with a special interest in addiction medicine in Brisbane, Australia. Results: Of 350 patients surveyed, 220 were substance dependent, and 130 were general medical patients. Addicted patients were younger (mean ± S.D. 33.72 ± 8.14 vs. 44.24 ± 16.91 years, P < 0.0001) and had shorter driving histories (15.96 ± 8.50 vs. 25.54 ± 15.03 years, P < 0.0001). They had less driving related medical problems (vision, spectacle use, diabetes) but more fractures, surgical operations, dental trauma and assaults. Addicted patients also had significantly worse driving histories on most parameters measured including percent with driving suspensions (O.R. = 7.70, C.I. 4.38-13.63), duration of suspensions (1.71 ± 3.60 vs. 0.11 ± 0.31 years, P < 0.0001), number of motor vehicle collisions (2.00 ± 3.30 vs. 1.10 ± 1.32, P = 0.01), numbers of cars repaired (1.73 ± 3.59 vs. 1.08 ± 1.60, P = 0.042), rear end collisions (O.R. = 1.90, CI 1.13-3.25), running away after car crashes (O.R. = 26.37, CI 4.31-1077.48), other people hospitalized (O.R. = 2.00, C.I. 0.93-4.37, P = 0.037) and people killed (17 vs. 0 P = 0.0005). Upon multivariate analysis group membership was shown to be a significant determinant of both cars repaired and cars hit when controlled for length of driving history. Hence use of all types of drugs (O.R. = 10.07, C.I. 8.80-14.72) was more common in addicted patients as were general (O.R. = 3.64, C.I. 2.99-4.80) and road (O.R.= 2.73, C.I. 2.36-3.15) trauma. Conclusion: This study shows that despite shorter driving histories, addicted patients have worse driving careers and general trauma experience than the comparison group which is not explained by associated medical conditions. Trauma is relevant to addiction management at both the patient and policy levels. Substance dependence policies which focus largely on prevention of virus transmission likely have too narrow a public health focus, and tend to engender an unrealistically simplistic and trivialized view of the addiction syndrome. Reduction of drug driving and drug related trauma likely require policies which reduce drug use per se, and are not limited to harm reduction measures alone
The History, Relevance, and Applications of the Periodic System in Geochemistry
Geochemistry is a discipline in the earth sciences concerned with understanding the chemistry of the Earth and what that chemistry tells us about the processes that control the formation and evolution of Earth materials and the planet itself. The periodic table and the periodic system, as developed by Mendeleev and others in the nineteenth century, are as important in geochemistry as in other areas of chemistry. In fact, systemisation of the myriad of observations that geochemists make is perhaps even more important in this branch of chemistry, given the huge variability in the nature of Earth materials – from the Fe-rich core, through the silicate-dominated mantle and crust, to the volatile-rich ocean and atmosphere. This systemisation started in the eighteenth century, when geochemistry did not yet exist as a separate pursuit in itself. Mineralogy, one of the disciplines that eventually became geochemistry, was central to the discovery of the elements, and nineteenth-century mineralogists played a key role in this endeavour. Early “geochemists” continued this systemisation effort into the twentieth century, particularly highlighted in the career of V.M. Goldschmidt. The focus of the modern discipline of geochemistry has moved well beyond classification, in order to invert the information held in the properties of elements across the periodic table and their distribution across Earth and planetary materials, to learn about the physicochemical processes that shaped the Earth and other planets, on all scales. We illustrate this approach with key examples, those rooted in the patterns inherent in the periodic law as well as those that exploit concepts that only became familiar after Mendeleev, such as stable and radiogenic isotopes
- …