3,186 research outputs found

    Novel concepts in virally induced asthma

    Get PDF
    Viruses are the predominant infectious cause of asthma exacerbations in the developed world. In addition, recent evidence strongly suggests that viral infections may also have a causal role in the development of childhood asthma. In this article, we will briefly describe the general perception of how the link between infections and asthma has changed over the last century, and then focus on very recent developments that have provided new insights into the contribution of viruses to asthma pathogenesis. Highlighted areas include the contribution of severe early life viral infections to asthma inception, genetic determinants of severe viral infections in infancy, the differences in innate and adaptive immune system cytokine responses to viral infection between asthmatic and nonasthmatic subjects, and a potential vaccine strategy to prevent severe early life virally-induced illness

    Semi-Markov Graph Dynamics

    Get PDF
    In this paper, we outline a model of graph (or network) dynamics based on two ingredients. The first ingredient is a Markov chain on the space of possible graphs. The second ingredient is a semi-Markov counting process of renewal type. The model consists in subordinating the Markov chain to the semi-Markov counting process. In simple words, this means that the chain transitions occur at random time instants called epochs. The model is quite rich and its possible connections with algebraic geometry are briefly discussed. Moreover, for the sake of simplicity, we focus on the space of undirected graphs with a fixed number of nodes. However, in an example, we present an interbank market model where it is meaningful to use directed graphs or even weighted graphs.Comment: 25 pages, 4 figures, submitted to PLoS-ON

    Network 'small-world-ness': a quantitative method for determining canonical network equivalence

    Get PDF
    Background: Many technological, biological, social, and information networks fall into the broad class of 'small-world' networks: they have tightly interconnected clusters of nodes, and a shortest mean path length that is similar to a matched random graph (same number of nodes and edges). This semi-quantitative definition leads to a categorical distinction ('small/not-small') rather than a quantitative, continuous grading of networks, and can lead to uncertainty about a network's small-world status. Moreover, systems described by small-world networks are often studied using an equivalent canonical network model-the Watts-Strogatz (WS) model. However, the process of establishing an equivalent WS model is imprecise and there is a pressing need to discover ways in which this equivalence may be quantified. Methodology/Principal Findings: We defined a precise measure of 'small-world-ness' S based on the trade off between high local clustering and short path length. A network is now deemed a 'small-world' if S. 1-an assertion which may be tested statistically. We then examined the behavior of S on a large data-set of real-world systems. We found that all these systems were linked by a linear relationship between their S values and the network size n. Moreover, we show a method for assigning a unique Watts-Strogatz (WS) model to any real-world network, and show analytically that the WS models associated with our sample of networks also show linearity between S and n. Linearity between S and n is not, however, inevitable, and neither is S maximal for an arbitrary network of given size. Linearity may, however, be explained by a common limiting growth process. Conclusions/Significance: We have shown how the notion of a small-world network may be quantified. Several key properties of the metric are described and the use of WS canonical models is placed on a more secure footing

    The P2X(7) receptor tracer [C-11]SMW139 as an in vivo marker of neuroinflammation in multiple sclerosis: a first-in man study

    Get PDF
    Purpose: The novel PET tracer [11C]SMW139 binds with high affinity to the P2X7 receptor, which is expressed on pro-inflammatory microglia. The purposes of this first in-man study were to characterise pharmacokinetics of [11C]SMW139 in patients with active relapsing remitting multiple sclerosis (RRMS) and healthy controls (HC) and to evaluate its potential to identify in vivo neuroinflammation in RRMS. / Methods: Five RRMS patients and 5 age-matched HC underwent 90-min dynamic [11C]SMW139 PET scans, with online continuous and manual arterial sampling to generate a metabolite-corrected arterial plasma input function. Tissue time activity curves were fitted to single- and two-tissue compartment models, and the model that provided the best fits was determined using the Akaike information criterion. / Results: The optimal model for describing [11C]SMW139 kinetics in both RRMS and HC was a reversible two-tissue compartment model with blood volume parameter and with the dissociation rate k4 fixed to the whole-brain value. Exploratory group level comparisons demonstrated an increased volume of distribution (VT) and binding potential (BPND) in RRMS compared with HC in normal appearing brain regions. BPND in MS lesions was decreased compared with non-lesional white matter, and a further decrease was observed in gadolinium-enhancing lesions. In contrast, increased VT was observed in enhancing lesions, possibly resulting from disruption of the blood-brain barrier in active MS lesions. In addition, there was a high correlation between parameters obtained from 60- to 90-min datasets, although analyses using 60-min data led to a slight underestimation in regional VT and BPND values. / Conclusions: This first in-man study demonstrated that uptake of [11C]SMW139 can be quantified with PET using BPND as a measure for specific binding in healthy controls and RRMS patients. Additional studies are warranted for further clinical evaluation of this novel neuroinflammation tracer

    Non-singlet Baryons in Less Supersymmetric Backgrounds

    Get PDF
    We analyze the holographic description of non-singlet baryons in various backgrounds with reduced supersymmetries and/or confinement. We show that they exist in all AdS_5xY_5 backgrounds with Y_5 an Einstein manifold bearing five form flux, for a number of quarks 5N/8< k< N, independently on the supersymmetries preserved. This result still holds for gamma_i deformations. In the confining Maldacena-Nunez background non-singlet baryons also exist, although in this case the interval for the number of quarks is reduced as compared to the conformal case. We generalize these configurations to include a non-vanishing magnetic flux such that a complementary microscopical description can be given in terms of lower dimensional branes expanding into fuzzy baryons. This description is a first step towards exploring the finite 't Hooft coupling region.Comment: 36 Pages, 1 figure, Latex, v2: few minor changes, JHEP versio

    The air quality impacts of road closures associated with the 2004 Democratic National Convention in Boston

    Get PDF
    BACKGROUND: The Democratic National Convention (DNC) in Boston, Massachusetts in 2004 provided an opportunity to evaluate the impacts of a localized and short-term but potentially significant change in traffic patterns on air quality, and to determine the optimal monitoring approach to address events of this nature. It was anticipated that the road closures associated with the DNC would both influence the overall air pollution level and the distribution of concentrations across the city, through shifts in traffic patterns. METHODS: To capture these effects, we placed passive nitrogen dioxide badges at 40 sites around metropolitan Boston before, during, and after the DNC, with the goal of capturing the array of hypothesized impacts. In addition, we continuously measured elemental carbon at three sites, and gathered continuous air pollution data from US EPA fixed-site monitors and traffic count data from the Massachusetts Highway Department. RESULTS: There were significant reductions in traffic volume on the highway with closures north of Boston, with relatively little change along other highways, indicating a more isolated traffic reduction rather than an across-the-board decrease. For our nitrogen dioxide samples, while there was a relatively small change in mean concentrations, there was significant heterogeneity across sites, which corresponded with our a priori classifications of road segments. The median ratio of nitrogen dioxide concentrations during the DNC relative to non-DNC sampling periods was 0.58 at sites with hypothesized traffic reductions, versus 0.88 for sites with no changes hypothesized and 1.15 for sites with hypothesized traffic increases. Continuous monitors measured slightly lower concentrations of elemental carbon and nitrogen dioxide during road closure periods at monitors proximate to closed highway segments, but not for PM(2.5 )or further from major highways. CONCLUSION: We conclude that there was a small but measurable influence of DNC-related road closures on air quality patterns in the Boston area, and that a low-cost monitoring study combining passive badges for spatial heterogeneity and continuous monitors for temporal heterogeneity can provide useful insight for community air quality assessments

    Complexity without chaos: Plasticity within random recurrent networks generates robust timing and motor control

    Get PDF
    It is widely accepted that the complex dynamics characteristic of recurrent neural circuits contributes in a fundamental manner to brain function. Progress has been slow in understanding and exploiting the computational power of recurrent dynamics for two main reasons: nonlinear recurrent networks often exhibit chaotic behavior and most known learning rules do not work in robust fashion in recurrent networks. Here we address both these problems by demonstrating how random recurrent networks (RRN) that initially exhibit chaotic dynamics can be tuned through a supervised learning rule to generate locally stable neural patterns of activity that are both complex and robust to noise. The outcome is a novel neural network regime that exhibits both transiently stable and chaotic trajectories. We further show that the recurrent learning rule dramatically increases the ability of RRNs to generate complex spatiotemporal motor patterns, and accounts for recent experimental data showing a decrease in neural variability in response to stimulus onset

    An evaluation of sit to stand devices for use in rehabilitation

    Get PDF
    There are many assistive devices to help with raising a person from a seat. These devices are considered active as they require some balance, trunk control and weightbearing ability. There is concern that this movement is mostly passive due to fixation at the trunk and knee. This study explores the movement patterns in sit to stand transfers active and assisted. Study Design: A fully squared repeated measures design was use. All participants (n = 20) used all conditions (n = 7) in a balanced order. Transfers were recorded with; video recordings, a 6 dimensional force plate, hip, knee and ankle positions were recorded with motion capture. Subjective evaluations for comfort and security were completed. Physical data was compared with ANOVA calculations with Bonferroni corrections. Results: Device G scored highest for comfort, knee support and overall preference. Sling movement had a negative effect on the sensations of comfort and security. The motion analysis of the flexible knee support showed: People push into the floor and CoP moved towards the toe.More anterior knee movement (P < 0.05).More bodyweight through feet (P < 0.05).Quicker transfer of weight onto feet.Very low bodyweight was recorded in all lowering actions. The use of a flexible knee support raised the subjective and physical performance of the assistive device and may improve rehabilitation responses

    Bimanual grasp planning reflects changing rather than fixed constraint dominance

    Get PDF
    We studied whether motor-control constraints for grasping objects that are moved to new positions reflect a rigid constraint hierarchy or a flexible constraint hierarchy. In two experiments, we asked participants to move two plungers from the same start locations to different target locations (both high, both low, or one high and one low). We found that participants grasped the plungers symmetrically and at heights that ensured comfortable or easy-to-control end postures when the plungers had the same target heights, but these grasp tendencies were reduced when the plungers had different target heights. In addition, when the plungers had different mass distributions, participants behaved in ways that suggested still-different emphases of the relevant grasp constraints. When the plungers had different mass distributions, participants sacrificed bimanual symmetry for end-state comfort. The results suggest that bimanual grasp planning relies on a flexible rather than static hierarchy. Different constraints take on different degrees of importance depending on the nature of the task and on the level of task experience. The results have implications for the understanding of perceptual-motor skill learning. It may be that one mechanism underlying such learning is changing the priorities of task constraints
    • …
    corecore