75 research outputs found

    An evidence-based framework for predicting the impact of differing autotroph-heterotroph thermal sensitivities on consumer-prey dynamics

    Get PDF
    Increased temperature accelerates vital rates, influencing microbial population and wider ecosystem dynamics, for example, the predicted increases in cyanobacterial blooms associated with global warming. However, heterotrophic and mixotrophic protists, which are dominant grazers of microalgae, may be more thermally sensitive than autotrophs, and thus prey could be suppressed as temperature rises. Theoretical and meta-analyses have begun to address this issue, but an appropriate framework linking experimental data with theory is lacking. Using ecophysiological data to develop a novel model structure, we provide the first validation of this thermal sensitivity hypothesis: increased temperature improves the consumer’s ability to control the autotrophic prey. Specifically, the model accounts for temperature effects on auto- and mixotrophs and ingestion, growth and mortality rates, using an ecologically and economically important system (cyanobacteria grazed by a mixotrophic flagellate). Once established, we show the model to be a good predictor of temperature impacts on consumer–prey dynamics by comparing simulations with microcosm observations. Then, through simulations, we indicate our conclusions remain valid, even with large changes in bottom-up factors (prey growth and carrying capacity). In conclusion, we show that rising temperature could, counterintuitively, reduce the propensity for microalgal blooms to occur and, critically, provide a novel model framework for needed, continued assessment

    Detecting Specific Genotype by Environment Interactions Using Marginal Maximum Likelihood Estimation in the Classical Twin Design

    Get PDF
    Considerable effort has been devoted to the analysis of genotype by environment (G × E) interactions in various phenotypic domains, such as cognitive abilities and personality. In many studies, environmental variables were observed (measured) variables. In case of an unmeasured environment, van der Sluis et al. (2006) proposed to study heteroscedasticity in the factor model using only MZ twin data. This method is closely related to the Jinks and Fulker (1970) test for G × E, but slightly more powerful. In this paper, we identify four challenges to the investigation of G × E in general, and specifically to the heteroscedasticity approaches of Jinks and Fulker and van der Sluis et al. We propose extensions of these approaches purported to solve these problems. These extensions comprise: (1) including DZ twin data, (2) modeling both A × E and A × C interactions; and (3) extending the univariate approach to a multivariate approach. By means of simulations, we study the power of the univariate method to detect the different G × E interactions in varying situations. In addition, we study how well we could distinguish between A × E, A × C, and C × E. We apply a multivariate version of the extended model to an empirical data set on cognitive abilities

    Temporal Asynchrony of Trophic Status Between Mainstream and Tributary Bay Within a Giant Dendritic Reservoir: The Role of Local-Scale Regulators

    Get PDF
    Limnologists have regarded temporal coherence (synchrony) as a powerful tool for identifying the relative importance of local-scale regulators and regional climatic drivers on lake ecosystems. Limnological studies on Asian reservoirs have emphasized that climate and hydrology under the influences of monsoon are dominant factors regulating seasonal patterns of lake trophic status; yet, little is known of synchrony or asynchrony of trophic status in the single reservoir ecosystem. Based on monthly monitoring data of chlorophyll a, transparency, nutrients, and nonvolatile suspended solids (NVSS) during 1-year period, the present study evaluated temporal coherence to test whether local-scale regulators disturb the seasonal dynamics of trophic state indices (TSI) in a giant dendritic reservoir, China (Three Gorges Reservoir, TGR). Reservoir-wide coherences for TSICHL, TSISD, and TSITP showed dramatic variations over spatial scale, indicating temporal asynchrony of trophic status. Following the concept of TSI differences, algal productivity in the mainstream of TGR and Xiangxi Bay except the upstream of the bay were always limited by nonalgal turbidity (TSICHL−TSISD <0) rather than nitrogen and phosphorus (TSICHL−TSITN <0 and TSICHL−TSITP <0). The coherence analysis for TSI differences showed that local processes of Xiangxi Bay were the main responsible for local asynchrony of nonalgal turbidity limitation levels. Regression analysis further proved that local temporal asynchrony for TSISD and nonalgal turbidity limitation levels were regulated by local dynamics of NVSS, rather than geographical distance. The implications of the present study are to emphasize that the results of trophic status obtained from a single environment (reservoir mainstream) cannot be extrapolated to other environments (tributary bay) in a way that would allow its use as a sentinel site

    Sex differences in cardiovascular complications and mortality in hospital patients with covid-19: registry based observational study

    Get PDF
    Objective To assess whether the risk of cardiovascular complications of covid-19 differ between the sexes and to determine whether any sex differences in risk are reduced in individuals with pre-existing cardiovascular disease. Design Registry based observational study. Setting 74 hospitals across 13 countries (eight European) participating in CAPACITY-COVID (Cardiac complicAtions in Patients With SARS Corona vIrus 2 regisTrY), from March 2020 to May 2021 Participants All adults (aged ≥18 years), predominantly European, admitted to hospital with highly suspected covid-19 disease or covid-19 disease confirmed by positive laboratory test results (n=11 167 patients). Main outcome measures Any cardiovascular complication during admission to hospital. Secondary outcomes were in-hospital mortality and individual cardiovascular complications with ≥20 events for each sex. Logistic regression was used to examine sex differences in the risk of cardiovascular outcomes, overall and grouped by pre-existing cardiovascular disease. Results Of 11 167 adults (median age 68 years, 40% female participants) included, 3423 (36% of whom were female participants) had pre-existing cardiovascular disease. In both sexes, the most common cardiovascular complications were supraventricular tachycardias (4% of female participants, 6% of male participants), pulmonary embolism (3% and 5%), and heart failure (decompensated or de novo) (2% in both sexes). After adjusting for age, ethnic group, pre-existing cardiovascular disease, and risk factors for cardiovascular disease, female individuals were less likely than male individuals to have a cardiovascular complication (odds ratio 0.72, 95% confidence interval 0.64 to 0.80) or die (0.65, 0.59 to 0.72). Differences between the sexes were not modified by pre-existing cardiovascular disease; for the primary outcome, the female-to-male ratio of the odds ratio in those without, compared with those with, pre-existing cardiovascular disease was 0.84 (0.67 to 1.07). Conclusions In patients admitted to hospital for covid-19, female participants were less likely than male participants to have a cardiovascular complication. The differences between the sexes could not be attributed to the lower prevalence of pre-existing cardiovascular disease in female individuals. The reasons for this advantage in female individuals requires further research

    Competitive outcome of Daphnia-Simocephalus experimental microcosms: salinity versus priority effects

    Get PDF
    Competition is a major driving force in freshwaters, especially given the cyclic nature and dynamics of pelagic food webs. Competition is especially important in the initial species assortment during colonization and re-colonization events, which depends strongly on the environmental context. Subtle changes, such as saline intrusion, may disrupt competitive relationships and, thus, influence community composition. Bearing this in mind, our objective was to assess whether low salinity levels (using NaCl as a proxy) alter the competitive outcome (measured as the rate of population biomass increase) of Daphnia-Simocephalus experimental microcosms, taking into account interactions with priority effects (sequential species arrival order). With this approach, we aimed to experimentally demonstrate a putative mechanism of differential species sorting in brackish environments or in freshwaters facing secondary salinization. Experiments considered three salinity levels, regarding NaCl added (0.00, 0.75 and 1.50 g L(-1)), crossed with three competition scenarios (no priority, priority of Daphnia over Simocephalus, and vice-versa). At lower NaCl concentrations (0.00 and 0.75 g L(-1)), Daphnia was a significantly superior competitor, irrespective of the species inoculation order, suggesting negligible priority effects. However, the strong decrease in Daphnia population growth at 1.50 g L(-1) alleviated the competitive pressure on Simocephalus, causing an inversion of the competitive outcome in favour of Simocephalus. The intensity of this inversion depended on the competition scenario. This salinity-mediated disruption of the competitive outcome demonstrates that subtle environmental changes produce indirect effects in key ecological mechanisms, thus altering community composition, which may lead to serious implications in terms of ecosystem functioning (e.g. lake regime shifts due to reduced grazing) and biodiversity

    Neutral and cationic vanadium(III) alkyl and allyl complexes with a cyclopentadienyl-amine ancillary ligand

    Get PDF
    The (N,N-dimethylaminoethyl)cyclopentadienyI vanadium(III) complex [eta(5),eta(1)-C5H4(CH2)(2)-NMe2]VCl2(PMe3) (1), in which the pendant amine is coordinated to the metal center, was prepared by the reaction Of VCl3(PMe3)(2) with Li[C5H4(CH2)(2)NMe2] in THF. Reaction of 1 with 2 equiv of MeLi yields [eta(5)-C5H4(CH2)(2)NMe2]VMe2(PMe3)(2) (2), in which the amine is released in favor of the binding of a second phosphine. Compound 2 reacts with [PhNMe2H]-[BPh4] to form the ionic complex {[eta(5),eta(2)-C5H4(CH2)(2)N(Me)CH2]V(PMe3)(2)}[BPh4] (3), in which a methyl group of the pendant NMe2 functionality is metalated, and 2 equiv of methane. Reaction of 1 with allylmagnesium chloride yields [eta(5)-C5H4(CH2)(2)NMe2]V(eta(3)-C3H5)Cl(PMe3) (4), in which the amine is released in favor of the eta(3)-bonding of the allyl ligand. Methylation of 4 to yield thermally labile [eta(5)-C5H4(CH2)(2)NMe2]V(eta(3)-C3H5)Me(PMe3) (5), followed by reaction with [PhNMe2H] [BPh4], gives protonation exclusively at the methyl group to yield the ionic allyl complex {[eta(5),eta(1)-C5H4(CH2)(2)NMe2]V(eta(3)-C3H5)(PMe3)}[BPh4] (6) without concomitant NMe2 metalation

    Polymerization of propene with modified constrained geometry complexes. Double-bond isomerization in pendant alkenyl groups attached to cyclopentadienyl ligands

    Get PDF
    Polymerization of propene with dimethylsilylene-bridged (amidocyclopentadienyl) dichlorotitanium( IV) complexes [TiCl2 {eta(5)-1-(t-BuSiMe2N-kappaN)- 2,3,4- Me-3 -5- R-C-5}], where R =Me (1), H (2), Ph (3), 4-fluorophenyl (4), but-2-en-2-yl (5), and butyl (6), combined with excess methylaluminoxane revealed a moderate effect of the substituent R on the catalyst activity and the molecular weight of polypropene. The asymmetric substitution in the position adjacent to the bridging carbon atom resulted in polymer yields decreasing in the order 1 > 6 > 3 approximate to 5 > 4 > 2 while polymers with the molecular weights (M-w) close to 2.5 x 10(5) for 1, 3, and 4, 1.5 x 10(5) for 5 and 6, and 7.5 x 10(4) for 2 were obtained. The C-13 NMR analysis of the polymers has shown that atactic polypropene is slightly enriched with syndiotactic triads for all the catalysts. Investigation of the crystal structure of 5 by X-ray crystallography revealed that the double bond in but-3-en-2-yl had shifted to an internal position to give the isomeric, but-2-en-2-yl-substituted complex. Likewise, the spectroscopic data for complex 7 prepared from the ligand containing but-3-en-1-yl substituent, indicate the absence of terminal double bond
    corecore